Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sltval2 Structured version   Visualization version   Unicode version

Theorem sltval2 31809
Description: Alternate expression for surreal less than. Two surreals obey surreal less than iff they obey the sign ordering at the first place they differ. (Contributed by Scott Fenton, 17-Jun-2011.)
Assertion
Ref Expression
sltval2  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  <->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) )
Distinct variable groups:    A, a    B, a

Proof of Theorem sltval2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sltval 31800 . 2  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  <->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) ) )
2 fvex 6201 . . . . . . . . . . . . 13  |-  ( A `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  e. 
_V
3 fvex 6201 . . . . . . . . . . . . 13  |-  ( B `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  e. 
_V
42, 3brtp 31639 . . . . . . . . . . . 12  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  <->  ( ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )  \/  (
( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  \/  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  /\  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  2o ) ) )
5 1n0 7575 . . . . . . . . . . . . . . . . 17  |-  1o  =/=  (/)
65neii 2796 . . . . . . . . . . . . . . . 16  |-  -.  1o  =  (/)
7 eqeq1 2626 . . . . . . . . . . . . . . . 16  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  ->  (
( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  (/)  <->  1o  =  (/) ) )
86, 7mtbiri 317 . . . . . . . . . . . . . . 15  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  ->  -.  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )
9 fvprc 6185 . . . . . . . . . . . . . . 15  |-  ( -. 
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V  ->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )
108, 9nsyl2 142 . . . . . . . . . . . . . 14  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
1110adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
1210adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
13 2on0 7569 . . . . . . . . . . . . . . . . 17  |-  2o  =/=  (/)
1413neii 2796 . . . . . . . . . . . . . . . 16  |-  -.  2o  =  (/)
15 eqeq1 2626 . . . . . . . . . . . . . . . 16  |-  ( ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o  ->  (
( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  (/)  <->  2o  =  (/) ) )
1614, 15mtbiri 317 . . . . . . . . . . . . . . 15  |-  ( ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o  ->  -.  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )
17 fvprc 6185 . . . . . . . . . . . . . . 15  |-  ( -. 
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V  ->  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )
1816, 17nsyl2 142 . . . . . . . . . . . . . 14  |-  ( ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
1918adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  (/)  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
2011, 12, 193jaoi 1391 . . . . . . . . . . . 12  |-  ( ( ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o 
/\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )  \/  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  \/  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  /\  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  2o ) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
214, 20sylbi 207 . . . . . . . . . . 11  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
22 onintrab 7001 . . . . . . . . . . 11  |-  ( |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  e.  _V  <->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On )
2321, 22sylib 208 . . . . . . . . . 10  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On )
2423adantl 482 . . . . . . . . 9  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On )
25 onelon 5748 . . . . . . . . . . . . . 14  |-  ( (
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On  /\  y  e.  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  -> 
y  e.  On )
2625expcom 451 . . . . . . . . . . . . 13  |-  ( y  e.  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ->  ( |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On  ->  y  e.  On ) )
2724, 26syl5 34 . . . . . . . . . . . 12  |-  ( y  e.  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ->  (
( ( A  e.  No  /\  B  e.  No )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) )  ->  y  e.  On ) )
28 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( a  =  y  ->  ( A `  a )  =  ( A `  y ) )
29 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( a  =  y  ->  ( B `  a )  =  ( B `  y ) )
3028, 29neeq12d 2855 . . . . . . . . . . . . . 14  |-  ( a  =  y  ->  (
( A `  a
)  =/=  ( B `
 a )  <->  ( A `  y )  =/=  ( B `  y )
) )
3130onnminsb 7004 . . . . . . . . . . . . 13  |-  ( y  e.  On  ->  (
y  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  -.  ( A `  y
)  =/=  ( B `
 y ) ) )
3231com12 32 . . . . . . . . . . . 12  |-  ( y  e.  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ->  (
y  e.  On  ->  -.  ( A `  y
)  =/=  ( B `
 y ) ) )
3327, 32syldc 48 . . . . . . . . . . 11  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )  -> 
( y  e.  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  ->  -.  ( A `  y )  =/=  ( B `  y )
) )
34 df-ne 2795 . . . . . . . . . . . 12  |-  ( ( A `  y )  =/=  ( B `  y )  <->  -.  ( A `  y )  =  ( B `  y ) )
3534con2bii 347 . . . . . . . . . . 11  |-  ( ( A `  y )  =  ( B `  y )  <->  -.  ( A `  y )  =/=  ( B `  y
) )
3633, 35syl6ibr 242 . . . . . . . . . 10  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )  -> 
( y  e.  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  ->  ( A `  y )  =  ( B `  y ) ) )
3736ralrimiv 2965 . . . . . . . . 9  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )  ->  A. y  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ( A `  y )  =  ( B `  y ) )
3824, 37jca 554 . . . . . . . 8  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )  -> 
( |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  e.  On  /\ 
A. y  e.  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  ( A `  y
)  =  ( B `
 y ) ) )
3938ex 450 . . . . . . 7  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  ->  ( |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On  /\  A. y  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ( A `  y )  =  ( B `  y ) ) ) )
4039impac 651 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )  -> 
( ( |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On  /\  A. y  e. 
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ( A `  y )  =  ( B `  y ) )  /\  ( A `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) )
41 anass 681 . . . . . 6  |-  ( ( ( |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On  /\  A. y  e. 
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ( A `  y )  =  ( B `  y ) )  /\  ( A `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )  <->  ( |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On  /\  ( A. y  e.  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ( A `
 y )  =  ( B `  y
)  /\  ( A `  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) ) )
4240, 41sylib 208 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )  -> 
( |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  e.  On  /\  ( A. y  e. 
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ( A `  y )  =  ( B `  y )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) ) )
43 raleq 3138 . . . . . . 7  |-  ( x  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  <->  A. y  e.  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ( A `
 y )  =  ( B `  y
) ) )
44 fveq2 6191 . . . . . . . 8  |-  ( x  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( A `  x )  =  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
45 fveq2 6191 . . . . . . . 8  |-  ( x  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( B `  x )  =  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
4644, 45breq12d 4666 . . . . . . 7  |-  ( x  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( ( A `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x )  <->  ( A `  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) )
4743, 46anbi12d 747 . . . . . 6  |-  ( x  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) )  <->  ( A. y  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ( A `  y )  =  ( B `  y )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) ) ) )
4847rspcev 3309 . . . . 5  |-  ( (
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On  /\  ( A. y  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ( A `  y )  =  ( B `  y )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) ) )  ->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) )
4942, 48syl 17 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )  ->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) )
5049ex 450 . . 3  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  ->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) ) ) )
51 eqeq12 2635 . . . . . . . . . . . . . 14  |-  ( ( ( A `  x
)  =  1o  /\  ( B `  x )  =  (/) )  ->  (
( A `  x
)  =  ( B `
 x )  <->  1o  =  (/) ) )
526, 51mtbiri 317 . . . . . . . . . . . . 13  |-  ( ( ( A `  x
)  =  1o  /\  ( B `  x )  =  (/) )  ->  -.  ( A `  x )  =  ( B `  x ) )
53 1on 7567 . . . . . . . . . . . . . . . . 17  |-  1o  e.  On
54 0elon 5778 . . . . . . . . . . . . . . . . 17  |-  (/)  e.  On
55 suc11 5831 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1o  e.  On  /\  (/) 
e.  On )  -> 
( suc  1o  =  suc  (/)  <->  1o  =  (/) ) )
5655necon3bid 2838 . . . . . . . . . . . . . . . . 17  |-  ( ( 1o  e.  On  /\  (/) 
e.  On )  -> 
( suc  1o  =/=  suc  (/) 
<->  1o  =/=  (/) ) )
5753, 54, 56mp2an 708 . . . . . . . . . . . . . . . 16  |-  ( suc 
1o  =/=  suc  (/)  <->  1o  =/=  (/) )
585, 57mpbir 221 . . . . . . . . . . . . . . 15  |-  suc  1o  =/=  suc  (/)
59 df-2o 7561 . . . . . . . . . . . . . . . 16  |-  2o  =  suc  1o
60 df-1o 7560 . . . . . . . . . . . . . . . 16  |-  1o  =  suc  (/)
6159, 60eqeq12i 2636 . . . . . . . . . . . . . . 15  |-  ( 2o  =  1o  <->  suc  1o  =  suc  (/) )
6258, 61nemtbir 2889 . . . . . . . . . . . . . 14  |-  -.  2o  =  1o
63 eqeq12 2635 . . . . . . . . . . . . . . 15  |-  ( ( ( A `  x
)  =  1o  /\  ( B `  x )  =  2o )  -> 
( ( A `  x )  =  ( B `  x )  <-> 
1o  =  2o ) )
64 eqcom 2629 . . . . . . . . . . . . . . 15  |-  ( 1o  =  2o  <->  2o  =  1o )
6563, 64syl6bb 276 . . . . . . . . . . . . . 14  |-  ( ( ( A `  x
)  =  1o  /\  ( B `  x )  =  2o )  -> 
( ( A `  x )  =  ( B `  x )  <-> 
2o  =  1o ) )
6662, 65mtbiri 317 . . . . . . . . . . . . 13  |-  ( ( ( A `  x
)  =  1o  /\  ( B `  x )  =  2o )  ->  -.  ( A `  x
)  =  ( B `
 x ) )
6713nesymi 2851 . . . . . . . . . . . . . 14  |-  -.  (/)  =  2o
68 eqeq12 2635 . . . . . . . . . . . . . 14  |-  ( ( ( A `  x
)  =  (/)  /\  ( B `  x )  =  2o )  ->  (
( A `  x
)  =  ( B `
 x )  <->  (/)  =  2o ) )
6967, 68mtbiri 317 . . . . . . . . . . . . 13  |-  ( ( ( A `  x
)  =  (/)  /\  ( B `  x )  =  2o )  ->  -.  ( A `  x )  =  ( B `  x ) )
7052, 66, 693jaoi 1391 . . . . . . . . . . . 12  |-  ( ( ( ( A `  x )  =  1o 
/\  ( B `  x )  =  (/) )  \/  ( ( A `  x )  =  1o  /\  ( B `  x )  =  2o )  \/  (
( A `  x
)  =  (/)  /\  ( B `  x )  =  2o ) )  ->  -.  ( A `  x
)  =  ( B `
 x ) )
71 fvex 6201 . . . . . . . . . . . . 13  |-  ( A `
 x )  e. 
_V
72 fvex 6201 . . . . . . . . . . . . 13  |-  ( B `
 x )  e. 
_V
7371, 72brtp 31639 . . . . . . . . . . . 12  |-  ( ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
)  <->  ( ( ( A `  x )  =  1o  /\  ( B `  x )  =  (/) )  \/  (
( A `  x
)  =  1o  /\  ( B `  x )  =  2o )  \/  ( ( A `  x )  =  (/)  /\  ( B `  x
)  =  2o ) ) )
74 df-ne 2795 . . . . . . . . . . . 12  |-  ( ( A `  x )  =/=  ( B `  x )  <->  -.  ( A `  x )  =  ( B `  x ) )
7570, 73, 743imtr4i 281 . . . . . . . . . . 11  |-  ( ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
)  ->  ( A `  x )  =/=  ( B `  x )
)
76 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( a  =  x  ->  ( A `  a )  =  ( A `  x ) )
77 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( a  =  x  ->  ( B `  a )  =  ( B `  x ) )
7876, 77neeq12d 2855 . . . . . . . . . . . . . . 15  |-  ( a  =  x  ->  (
( A `  a
)  =/=  ( B `
 a )  <->  ( A `  x )  =/=  ( B `  x )
) )
7978elrab 3363 . . . . . . . . . . . . . 14  |-  ( x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  <->  ( x  e.  On  /\  ( A `
 x )  =/=  ( B `  x
) ) )
8079biimpri 218 . . . . . . . . . . . . 13  |-  ( ( x  e.  On  /\  ( A `  x )  =/=  ( B `  x ) )  ->  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )
8180adantlr 751 . . . . . . . . . . . 12  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  ( A `  x )  =/=  ( B `  x ) )  ->  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )
82 ssrab2 3687 . . . . . . . . . . . . . . . . . 18  |-  { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  C_  On
83 ne0i 3921 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ->  { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  =/=  (/) )
8483adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  ->  { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  =/=  (/) )
85 onint 6995 . . . . . . . . . . . . . . . . . 18  |-  ( ( { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  C_  On  /\  {
a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  =/=  (/) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )
8682, 84, 85sylancr 695 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )
87 nfrab1 3122 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ a { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }
8887nfint 4486 . . . . . . . . . . . . . . . . . . 19  |-  F/_ a |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }
89 nfcv 2764 . . . . . . . . . . . . . . . . . . 19  |-  F/_ a On
90 nfcv 2764 . . . . . . . . . . . . . . . . . . . . 21  |-  F/_ a A
9190, 88nffv 6198 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ a
( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )
92 nfcv 2764 . . . . . . . . . . . . . . . . . . . . 21  |-  F/_ a B
9392, 88nffv 6198 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ a
( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )
9491, 93nfne 2894 . . . . . . . . . . . . . . . . . . 19  |-  F/ a ( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =/=  ( B `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )
95 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( A `  a )  =  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
96 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( B `  a )  =  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
9795, 96neeq12d 2855 . . . . . . . . . . . . . . . . . . 19  |-  ( a  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( ( A `  a
)  =/=  ( B `
 a )  <->  ( A `  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  =/=  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) ) )
9888, 89, 94, 97elrabf 3360 . . . . . . . . . . . . . . . . . 18  |-  ( |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  <->  ( |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  e.  On  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =/=  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) )
9998simprbi 480 . . . . . . . . . . . . . . . . 17  |-  ( |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =/=  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
10086, 99syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  -> 
( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =/=  ( B `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) )
101 df-ne 2795 . . . . . . . . . . . . . . . 16  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =/=  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  <->  -.  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
102100, 101sylib 208 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  ->  -.  ( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  ( B `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) )
103 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( A `  y )  =  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
104 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( B `  y )  =  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
105103, 104eqeq12d 2637 . . . . . . . . . . . . . . . . 17  |-  ( y  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( ( A `  y
)  =  ( B `
 y )  <->  ( A `  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  =  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) ) )
106105rspccv 3306 . . . . . . . . . . . . . . . 16  |-  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  ->  ( |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  x  ->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) )
107106ad2antlr 763 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  -> 
( |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  e.  x  ->  ( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  ( B `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) ) )
108102, 107mtod 189 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  ->  -.  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  e.  x
)
109 simpll 790 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  ->  x  e.  On )
110 oninton 7000 . . . . . . . . . . . . . . . . 17  |-  ( ( { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  C_  On  /\  {
a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  =/=  (/) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On )
11182, 83, 110sylancr 695 . . . . . . . . . . . . . . . 16  |-  ( x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On )
112111adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On )
113 ontri1 5757 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  On  /\  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On )  ->  ( x  C_  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  <->  -.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  x ) )
114109, 112, 113syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  -> 
( x  C_  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  <->  -.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  x ) )
115108, 114mpbird 247 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  ->  x  C_  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )
116 intss1 4492 . . . . . . . . . . . . . 14  |-  ( x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  C_  x )
117116adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  C_  x )
118115, 117eqssd 3620 . . . . . . . . . . . 12  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  ->  x  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )
11981, 118syldan 487 . . . . . . . . . . 11  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  ( A `  x )  =/=  ( B `  x ) )  ->  x  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )
12075, 119sylan2 491 . . . . . . . . . 10  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) )  ->  x  =  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )
121120fveq2d 6195 . . . . . . . . 9  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) )  ->  ( A `  x )  =  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
122120fveq2d 6195 . . . . . . . . 9  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) )  ->  ( B `  x )  =  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
123121, 122breq12d 4666 . . . . . . . 8  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) )  ->  (
( A `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x )  <->  ( A `  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) )
124123biimpd 219 . . . . . . 7  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) )  ->  (
( A `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x )  ->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) ) )
125124ex 450 . . . . . 6  |-  ( ( x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) )  -> 
( ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x )  ->  (
( A `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x )  ->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) ) ) )
126125pm2.43d 53 . . . . 5  |-  ( ( x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) )  -> 
( ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x )  ->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) ) )
127126expimpd 629 . . . 4  |-  ( x  e.  On  ->  (
( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) )  -> 
( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) )
128127rexlimiv 3027 . . 3  |-  ( E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) )  ->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) )
12950, 128impbid1 215 . 2  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  <->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) ) ) )
1301, 129bitr4d 271 1  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  <->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   {ctp 4181   <.cop 4183   |^|cint 4475   class class class wbr 4653   Oncon0 5723   suc csuc 5725   ` cfv 5888   1oc1o 7553   2oc2o 7554   Nocsur 31793   <scslt 31794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fv 5896  df-1o 7560  df-2o 7561  df-slt 31797
This theorem is referenced by:  sltintdifex  31814  sltres  31815  noextendlt  31822  noextendgt  31823  nosepnelem  31830  nosep1o  31832  nosepdmlem  31833  nodenselem8  31841  nosupbnd2lem1  31861
  Copyright terms: Public domain W3C validator