| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardaleph | Structured version Visualization version Unicode version | ||
| Description: Given any transfinite
cardinal number |
| Ref | Expression |
|---|---|
| cardaleph |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardon 8770 |
. . . . . . . . 9
| |
| 2 | eleq1 2689 |
. . . . . . . . 9
| |
| 3 | 1, 2 | mpbii 223 |
. . . . . . . 8
|
| 4 | alephle 8911 |
. . . . . . . . 9
| |
| 5 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 6 | 5 | sseq2d 3633 |
. . . . . . . . . 10
|
| 7 | 6 | rspcev 3309 |
. . . . . . . . 9
|
| 8 | 4, 7 | mpdan 702 |
. . . . . . . 8
|
| 9 | nfcv 2764 |
. . . . . . . . . 10
| |
| 10 | nfcv 2764 |
. . . . . . . . . . 11
| |
| 11 | nfrab1 3122 |
. . . . . . . . . . . 12
| |
| 12 | 11 | nfint 4486 |
. . . . . . . . . . 11
|
| 13 | 10, 12 | nffv 6198 |
. . . . . . . . . 10
|
| 14 | 9, 13 | nfss 3596 |
. . . . . . . . 9
|
| 15 | fveq2 6191 |
. . . . . . . . . 10
| |
| 16 | 15 | sseq2d 3633 |
. . . . . . . . 9
|
| 17 | 14, 16 | onminsb 6999 |
. . . . . . . 8
|
| 18 | 3, 8, 17 | 3syl 18 |
. . . . . . 7
|
| 19 | 18 | a1i 11 |
. . . . . 6
|
| 20 | fveq2 6191 |
. . . . . . . . 9
| |
| 21 | aleph0 8889 |
. . . . . . . . 9
| |
| 22 | 20, 21 | syl6eq 2672 |
. . . . . . . 8
|
| 23 | 22 | sseq1d 3632 |
. . . . . . 7
|
| 24 | 23 | biimprd 238 |
. . . . . 6
|
| 25 | 19, 24 | anim12d 586 |
. . . . 5
|
| 26 | eqss 3618 |
. . . . 5
| |
| 27 | 25, 26 | syl6ibr 242 |
. . . 4
|
| 28 | 27 | com12 32 |
. . 3
|
| 29 | 28 | ancoms 469 |
. 2
|
| 30 | vex 3203 |
. . . . . . . . . . . 12
| |
| 31 | 30 | sucid 5804 |
. . . . . . . . . . 11
|
| 32 | eleq2 2690 |
. . . . . . . . . . 11
| |
| 33 | 31, 32 | mpbiri 248 |
. . . . . . . . . 10
|
| 34 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 35 | 34 | sseq2d 3633 |
. . . . . . . . . . 11
|
| 36 | 35 | onnminsb 7004 |
. . . . . . . . . 10
|
| 37 | 33, 36 | syl5 34 |
. . . . . . . . 9
|
| 38 | 37 | imp 445 |
. . . . . . . 8
|
| 39 | 38 | adantl 482 |
. . . . . . 7
|
| 40 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 41 | alephsuc 8891 |
. . . . . . . . . . 11
| |
| 42 | 40, 41 | sylan9eqr 2678 |
. . . . . . . . . 10
|
| 43 | 42 | eleq2d 2687 |
. . . . . . . . 9
|
| 44 | 43 | biimpd 219 |
. . . . . . . 8
|
| 45 | elharval 8468 |
. . . . . . . . . 10
| |
| 46 | 45 | simprbi 480 |
. . . . . . . . 9
|
| 47 | onenon 8775 |
. . . . . . . . . . . 12
| |
| 48 | 3, 47 | syl 17 |
. . . . . . . . . . 11
|
| 49 | alephon 8892 |
. . . . . . . . . . . 12
| |
| 50 | onenon 8775 |
. . . . . . . . . . . 12
| |
| 51 | 49, 50 | ax-mp 5 |
. . . . . . . . . . 11
|
| 52 | carddom2 8803 |
. . . . . . . . . . 11
| |
| 53 | 48, 51, 52 | sylancl 694 |
. . . . . . . . . 10
|
| 54 | sseq1 3626 |
. . . . . . . . . . 11
| |
| 55 | alephcard 8893 |
. . . . . . . . . . . 12
| |
| 56 | 55 | sseq2i 3630 |
. . . . . . . . . . 11
|
| 57 | 54, 56 | syl6bb 276 |
. . . . . . . . . 10
|
| 58 | 53, 57 | bitr3d 270 |
. . . . . . . . 9
|
| 59 | 46, 58 | syl5ib 234 |
. . . . . . . 8
|
| 60 | 44, 59 | sylan9r 690 |
. . . . . . 7
|
| 61 | 39, 60 | mtod 189 |
. . . . . 6
|
| 62 | 61 | rexlimdvaa 3032 |
. . . . 5
|
| 63 | onintrab2 7002 |
. . . . . . . . . . . . . 14
| |
| 64 | 8, 63 | sylib 208 |
. . . . . . . . . . . . 13
|
| 65 | onelon 5748 |
. . . . . . . . . . . . 13
| |
| 66 | 64, 65 | sylan 488 |
. . . . . . . . . . . 12
|
| 67 | 36 | adantld 483 |
. . . . . . . . . . . 12
|
| 68 | 66, 67 | mpcom 38 |
. . . . . . . . . . 11
|
| 69 | 49 | onelssi 5836 |
. . . . . . . . . . 11
|
| 70 | 68, 69 | nsyl 135 |
. . . . . . . . . 10
|
| 71 | 70 | nrexdv 3001 |
. . . . . . . . 9
|
| 72 | 71 | adantr 481 |
. . . . . . . 8
|
| 73 | alephlim 8890 |
. . . . . . . . . . 11
| |
| 74 | 64, 73 | sylan 488 |
. . . . . . . . . 10
|
| 75 | 74 | eleq2d 2687 |
. . . . . . . . 9
|
| 76 | eliun 4524 |
. . . . . . . . 9
| |
| 77 | 75, 76 | syl6bb 276 |
. . . . . . . 8
|
| 78 | 72, 77 | mtbird 315 |
. . . . . . 7
|
| 79 | 78 | ex 450 |
. . . . . 6
|
| 80 | 3, 79 | syl 17 |
. . . . 5
|
| 81 | 62, 80 | jaod 395 |
. . . 4
|
| 82 | 8, 17 | syl 17 |
. . . . . 6
|
| 83 | alephon 8892 |
. . . . . . 7
| |
| 84 | onsseleq 5765 |
. . . . . . 7
| |
| 85 | 83, 84 | mpan2 707 |
. . . . . 6
|
| 86 | 82, 85 | mpbid 222 |
. . . . 5
|
| 87 | 86 | ord 392 |
. . . 4
|
| 88 | 3, 81, 87 | sylsyld 61 |
. . 3
|
| 89 | 88 | adantl 482 |
. 2
|
| 90 | eloni 5733 |
. . . . 5
| |
| 91 | ordzsl 7045 |
. . . . . 6
| |
| 92 | 3orass 1040 |
. . . . . 6
| |
| 93 | 91, 92 | bitri 264 |
. . . . 5
|
| 94 | 90, 93 | sylib 208 |
. . . 4
|
| 95 | 3, 64, 94 | 3syl 18 |
. . 3
|
| 96 | 95 | adantl 482 |
. 2
|
| 97 | 29, 89, 96 | mpjaod 396 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-oi 8415 df-har 8463 df-card 8765 df-aleph 8766 |
| This theorem is referenced by: cardalephex 8913 tskcard 9603 |
| Copyright terms: Public domain | W3C validator |