MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmfval Structured version   Visualization version   Unicode version

Theorem nmfval 22393
Description: The value of the norm function. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmfval.n  |-  N  =  ( norm `  W
)
nmfval.x  |-  X  =  ( Base `  W
)
nmfval.z  |-  .0.  =  ( 0g `  W )
nmfval.d  |-  D  =  ( dist `  W
)
Assertion
Ref Expression
nmfval  |-  N  =  ( x  e.  X  |->  ( x D  .0.  ) )
Distinct variable groups:    x, D    x, W    x, X    x,  .0.
Allowed substitution hint:    N( x)

Proof of Theorem nmfval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nmfval.n . 2  |-  N  =  ( norm `  W
)
2 fveq2 6191 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
3 nmfval.x . . . . . 6  |-  X  =  ( Base `  W
)
42, 3syl6eqr 2674 . . . . 5  |-  ( w  =  W  ->  ( Base `  w )  =  X )
5 fveq2 6191 . . . . . . 7  |-  ( w  =  W  ->  ( dist `  w )  =  ( dist `  W
) )
6 nmfval.d . . . . . . 7  |-  D  =  ( dist `  W
)
75, 6syl6eqr 2674 . . . . . 6  |-  ( w  =  W  ->  ( dist `  w )  =  D )
8 eqidd 2623 . . . . . 6  |-  ( w  =  W  ->  x  =  x )
9 fveq2 6191 . . . . . . 7  |-  ( w  =  W  ->  ( 0g `  w )  =  ( 0g `  W
) )
10 nmfval.z . . . . . . 7  |-  .0.  =  ( 0g `  W )
119, 10syl6eqr 2674 . . . . . 6  |-  ( w  =  W  ->  ( 0g `  w )  =  .0.  )
127, 8, 11oveq123d 6671 . . . . 5  |-  ( w  =  W  ->  (
x ( dist `  w
) ( 0g `  w ) )  =  ( x D  .0.  ) )
134, 12mpteq12dv 4733 . . . 4  |-  ( w  =  W  ->  (
x  e.  ( Base `  w )  |->  ( x ( dist `  w
) ( 0g `  w ) ) )  =  ( x  e.  X  |->  ( x D  .0.  ) ) )
14 df-nm 22387 . . . 4  |-  norm  =  ( w  e.  _V  |->  ( x  e.  ( Base `  w )  |->  ( x ( dist `  w
) ( 0g `  w ) ) ) )
15 eqid 2622 . . . . . 6  |-  ( x  e.  X  |->  ( x D  .0.  ) )  =  ( x  e.  X  |->  ( x D  .0.  ) )
16 df-ov 6653 . . . . . . . 8  |-  ( x D  .0.  )  =  ( D `  <. x ,  .0.  >. )
17 fvrn0 6216 . . . . . . . 8  |-  ( D `
 <. x ,  .0.  >.
)  e.  ( ran 
D  u.  { (/) } )
1816, 17eqeltri 2697 . . . . . . 7  |-  ( x D  .0.  )  e.  ( ran  D  u.  {
(/) } )
1918a1i 11 . . . . . 6  |-  ( x  e.  X  ->  (
x D  .0.  )  e.  ( ran  D  u.  {
(/) } ) )
2015, 19fmpti 6383 . . . . 5  |-  ( x  e.  X  |->  ( x D  .0.  ) ) : X --> ( ran 
D  u.  { (/) } )
21 fvex 6201 . . . . . 6  |-  ( Base `  W )  e.  _V
223, 21eqeltri 2697 . . . . 5  |-  X  e. 
_V
23 fvex 6201 . . . . . . . 8  |-  ( dist `  W )  e.  _V
246, 23eqeltri 2697 . . . . . . 7  |-  D  e. 
_V
2524rnex 7100 . . . . . 6  |-  ran  D  e.  _V
26 p0ex 4853 . . . . . 6  |-  { (/) }  e.  _V
2725, 26unex 6956 . . . . 5  |-  ( ran 
D  u.  { (/) } )  e.  _V
28 fex2 7121 . . . . 5  |-  ( ( ( x  e.  X  |->  ( x D  .0.  ) ) : X --> ( ran  D  u.  { (/)
} )  /\  X  e.  _V  /\  ( ran 
D  u.  { (/) } )  e.  _V )  ->  ( x  e.  X  |->  ( x D  .0.  ) )  e.  _V )
2920, 22, 27, 28mp3an 1424 . . . 4  |-  ( x  e.  X  |->  ( x D  .0.  ) )  e.  _V
3013, 14, 29fvmpt 6282 . . 3  |-  ( W  e.  _V  ->  ( norm `  W )  =  ( x  e.  X  |->  ( x D  .0.  ) ) )
31 fvprc 6185 . . . . 5  |-  ( -.  W  e.  _V  ->  (
norm `  W )  =  (/) )
32 mpt0 6021 . . . . 5  |-  ( x  e.  (/)  |->  ( x D  .0.  ) )  =  (/)
3331, 32syl6eqr 2674 . . . 4  |-  ( -.  W  e.  _V  ->  (
norm `  W )  =  ( x  e.  (/)  |->  ( x D  .0.  ) ) )
34 fvprc 6185 . . . . . 6  |-  ( -.  W  e.  _V  ->  (
Base `  W )  =  (/) )
353, 34syl5eq 2668 . . . . 5  |-  ( -.  W  e.  _V  ->  X  =  (/) )
3635mpteq1d 4738 . . . 4  |-  ( -.  W  e.  _V  ->  ( x  e.  X  |->  ( x D  .0.  )
)  =  ( x  e.  (/)  |->  ( x D  .0.  ) ) )
3733, 36eqtr4d 2659 . . 3  |-  ( -.  W  e.  _V  ->  (
norm `  W )  =  ( x  e.  X  |->  ( x D  .0.  ) ) )
3830, 37pm2.61i 176 . 2  |-  ( norm `  W )  =  ( x  e.  X  |->  ( x D  .0.  )
)
391, 38eqtri 2644 1  |-  N  =  ( x  e.  X  |->  ( x D  .0.  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572   (/)c0 3915   {csn 4177   <.cop 4183    |-> cmpt 4729   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950   0gc0g 16100   normcnm 22381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-nm 22387
This theorem is referenced by:  nmval  22394  nmfval2  22395  nmpropd  22398  subgnm  22437  tngnm  22455  cnfldnm  22582  nmcn  22647  ressnm  29651
  Copyright terms: Public domain W3C validator