MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmfval Structured version   Visualization version   GIF version

Theorem nmfval 22393
Description: The value of the norm function. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmfval.n 𝑁 = (norm‘𝑊)
nmfval.x 𝑋 = (Base‘𝑊)
nmfval.z 0 = (0g𝑊)
nmfval.d 𝐷 = (dist‘𝑊)
Assertion
Ref Expression
nmfval 𝑁 = (𝑥𝑋 ↦ (𝑥𝐷 0 ))
Distinct variable groups:   𝑥,𝐷   𝑥,𝑊   𝑥,𝑋   𝑥, 0
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem nmfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nmfval.n . 2 𝑁 = (norm‘𝑊)
2 fveq2 6191 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
3 nmfval.x . . . . . 6 𝑋 = (Base‘𝑊)
42, 3syl6eqr 2674 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑋)
5 fveq2 6191 . . . . . . 7 (𝑤 = 𝑊 → (dist‘𝑤) = (dist‘𝑊))
6 nmfval.d . . . . . . 7 𝐷 = (dist‘𝑊)
75, 6syl6eqr 2674 . . . . . 6 (𝑤 = 𝑊 → (dist‘𝑤) = 𝐷)
8 eqidd 2623 . . . . . 6 (𝑤 = 𝑊𝑥 = 𝑥)
9 fveq2 6191 . . . . . . 7 (𝑤 = 𝑊 → (0g𝑤) = (0g𝑊))
10 nmfval.z . . . . . . 7 0 = (0g𝑊)
119, 10syl6eqr 2674 . . . . . 6 (𝑤 = 𝑊 → (0g𝑤) = 0 )
127, 8, 11oveq123d 6671 . . . . 5 (𝑤 = 𝑊 → (𝑥(dist‘𝑤)(0g𝑤)) = (𝑥𝐷 0 ))
134, 12mpteq12dv 4733 . . . 4 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤) ↦ (𝑥(dist‘𝑤)(0g𝑤))) = (𝑥𝑋 ↦ (𝑥𝐷 0 )))
14 df-nm 22387 . . . 4 norm = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤) ↦ (𝑥(dist‘𝑤)(0g𝑤))))
15 eqid 2622 . . . . . 6 (𝑥𝑋 ↦ (𝑥𝐷 0 )) = (𝑥𝑋 ↦ (𝑥𝐷 0 ))
16 df-ov 6653 . . . . . . . 8 (𝑥𝐷 0 ) = (𝐷‘⟨𝑥, 0 ⟩)
17 fvrn0 6216 . . . . . . . 8 (𝐷‘⟨𝑥, 0 ⟩) ∈ (ran 𝐷 ∪ {∅})
1816, 17eqeltri 2697 . . . . . . 7 (𝑥𝐷 0 ) ∈ (ran 𝐷 ∪ {∅})
1918a1i 11 . . . . . 6 (𝑥𝑋 → (𝑥𝐷 0 ) ∈ (ran 𝐷 ∪ {∅}))
2015, 19fmpti 6383 . . . . 5 (𝑥𝑋 ↦ (𝑥𝐷 0 )):𝑋⟶(ran 𝐷 ∪ {∅})
21 fvex 6201 . . . . . 6 (Base‘𝑊) ∈ V
223, 21eqeltri 2697 . . . . 5 𝑋 ∈ V
23 fvex 6201 . . . . . . . 8 (dist‘𝑊) ∈ V
246, 23eqeltri 2697 . . . . . . 7 𝐷 ∈ V
2524rnex 7100 . . . . . 6 ran 𝐷 ∈ V
26 p0ex 4853 . . . . . 6 {∅} ∈ V
2725, 26unex 6956 . . . . 5 (ran 𝐷 ∪ {∅}) ∈ V
28 fex2 7121 . . . . 5 (((𝑥𝑋 ↦ (𝑥𝐷 0 )):𝑋⟶(ran 𝐷 ∪ {∅}) ∧ 𝑋 ∈ V ∧ (ran 𝐷 ∪ {∅}) ∈ V) → (𝑥𝑋 ↦ (𝑥𝐷 0 )) ∈ V)
2920, 22, 27, 28mp3an 1424 . . . 4 (𝑥𝑋 ↦ (𝑥𝐷 0 )) ∈ V
3013, 14, 29fvmpt 6282 . . 3 (𝑊 ∈ V → (norm‘𝑊) = (𝑥𝑋 ↦ (𝑥𝐷 0 )))
31 fvprc 6185 . . . . 5 𝑊 ∈ V → (norm‘𝑊) = ∅)
32 mpt0 6021 . . . . 5 (𝑥 ∈ ∅ ↦ (𝑥𝐷 0 )) = ∅
3331, 32syl6eqr 2674 . . . 4 𝑊 ∈ V → (norm‘𝑊) = (𝑥 ∈ ∅ ↦ (𝑥𝐷 0 )))
34 fvprc 6185 . . . . . 6 𝑊 ∈ V → (Base‘𝑊) = ∅)
353, 34syl5eq 2668 . . . . 5 𝑊 ∈ V → 𝑋 = ∅)
3635mpteq1d 4738 . . . 4 𝑊 ∈ V → (𝑥𝑋 ↦ (𝑥𝐷 0 )) = (𝑥 ∈ ∅ ↦ (𝑥𝐷 0 )))
3733, 36eqtr4d 2659 . . 3 𝑊 ∈ V → (norm‘𝑊) = (𝑥𝑋 ↦ (𝑥𝐷 0 )))
3830, 37pm2.61i 176 . 2 (norm‘𝑊) = (𝑥𝑋 ↦ (𝑥𝐷 0 ))
391, 38eqtri 2644 1 𝑁 = (𝑥𝑋 ↦ (𝑥𝐷 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  c0 3915  {csn 4177  cop 4183  cmpt 4729  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  Basecbs 15857  distcds 15950  0gc0g 16100  normcnm 22381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-nm 22387
This theorem is referenced by:  nmval  22394  nmfval2  22395  nmpropd  22398  subgnm  22437  tngnm  22455  cnfldnm  22582  nmcn  22647  ressnm  29651
  Copyright terms: Public domain W3C validator