| Step | Hyp | Ref
| Expression |
| 1 | | nmfval.n |
. 2
⊢ 𝑁 = (norm‘𝑊) |
| 2 | | fveq2 6191 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) |
| 3 | | nmfval.x |
. . . . . 6
⊢ 𝑋 = (Base‘𝑊) |
| 4 | 2, 3 | syl6eqr 2674 |
. . . . 5
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝑋) |
| 5 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (dist‘𝑤) = (dist‘𝑊)) |
| 6 | | nmfval.d |
. . . . . . 7
⊢ 𝐷 = (dist‘𝑊) |
| 7 | 5, 6 | syl6eqr 2674 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (dist‘𝑤) = 𝐷) |
| 8 | | eqidd 2623 |
. . . . . 6
⊢ (𝑤 = 𝑊 → 𝑥 = 𝑥) |
| 9 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (0g‘𝑤) = (0g‘𝑊)) |
| 10 | | nmfval.z |
. . . . . . 7
⊢ 0 =
(0g‘𝑊) |
| 11 | 9, 10 | syl6eqr 2674 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (0g‘𝑤) = 0 ) |
| 12 | 7, 8, 11 | oveq123d 6671 |
. . . . 5
⊢ (𝑤 = 𝑊 → (𝑥(dist‘𝑤)(0g‘𝑤)) = (𝑥𝐷 0 )) |
| 13 | 4, 12 | mpteq12dv 4733 |
. . . 4
⊢ (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤) ↦ (𝑥(dist‘𝑤)(0g‘𝑤))) = (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 ))) |
| 14 | | df-nm 22387 |
. . . 4
⊢ norm =
(𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤) ↦ (𝑥(dist‘𝑤)(0g‘𝑤)))) |
| 15 | | eqid 2622 |
. . . . . 6
⊢ (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) = (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) |
| 16 | | df-ov 6653 |
. . . . . . . 8
⊢ (𝑥𝐷 0 ) = (𝐷‘〈𝑥, 0 〉) |
| 17 | | fvrn0 6216 |
. . . . . . . 8
⊢ (𝐷‘〈𝑥, 0 〉) ∈ (ran 𝐷 ∪
{∅}) |
| 18 | 16, 17 | eqeltri 2697 |
. . . . . . 7
⊢ (𝑥𝐷 0 ) ∈ (ran 𝐷 ∪
{∅}) |
| 19 | 18 | a1i 11 |
. . . . . 6
⊢ (𝑥 ∈ 𝑋 → (𝑥𝐷 0 ) ∈ (ran 𝐷 ∪
{∅})) |
| 20 | 15, 19 | fmpti 6383 |
. . . . 5
⊢ (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )):𝑋⟶(ran 𝐷 ∪ {∅}) |
| 21 | | fvex 6201 |
. . . . . 6
⊢
(Base‘𝑊)
∈ V |
| 22 | 3, 21 | eqeltri 2697 |
. . . . 5
⊢ 𝑋 ∈ V |
| 23 | | fvex 6201 |
. . . . . . . 8
⊢
(dist‘𝑊)
∈ V |
| 24 | 6, 23 | eqeltri 2697 |
. . . . . . 7
⊢ 𝐷 ∈ V |
| 25 | 24 | rnex 7100 |
. . . . . 6
⊢ ran 𝐷 ∈ V |
| 26 | | p0ex 4853 |
. . . . . 6
⊢ {∅}
∈ V |
| 27 | 25, 26 | unex 6956 |
. . . . 5
⊢ (ran
𝐷 ∪ {∅}) ∈
V |
| 28 | | fex2 7121 |
. . . . 5
⊢ (((𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )):𝑋⟶(ran 𝐷 ∪ {∅}) ∧ 𝑋 ∈ V ∧ (ran 𝐷 ∪ {∅}) ∈ V) → (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) ∈
V) |
| 29 | 20, 22, 27, 28 | mp3an 1424 |
. . . 4
⊢ (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) ∈
V |
| 30 | 13, 14, 29 | fvmpt 6282 |
. . 3
⊢ (𝑊 ∈ V →
(norm‘𝑊) = (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 ))) |
| 31 | | fvprc 6185 |
. . . . 5
⊢ (¬
𝑊 ∈ V →
(norm‘𝑊) =
∅) |
| 32 | | mpt0 6021 |
. . . . 5
⊢ (𝑥 ∈ ∅ ↦ (𝑥𝐷 0 )) =
∅ |
| 33 | 31, 32 | syl6eqr 2674 |
. . . 4
⊢ (¬
𝑊 ∈ V →
(norm‘𝑊) = (𝑥 ∈ ∅ ↦ (𝑥𝐷 0 ))) |
| 34 | | fvprc 6185 |
. . . . . 6
⊢ (¬
𝑊 ∈ V →
(Base‘𝑊) =
∅) |
| 35 | 3, 34 | syl5eq 2668 |
. . . . 5
⊢ (¬
𝑊 ∈ V → 𝑋 = ∅) |
| 36 | 35 | mpteq1d 4738 |
. . . 4
⊢ (¬
𝑊 ∈ V → (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) = (𝑥 ∈ ∅ ↦ (𝑥𝐷 0 ))) |
| 37 | 33, 36 | eqtr4d 2659 |
. . 3
⊢ (¬
𝑊 ∈ V →
(norm‘𝑊) = (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 ))) |
| 38 | 30, 37 | pm2.61i 176 |
. 2
⊢
(norm‘𝑊) =
(𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) |
| 39 | 1, 38 | eqtri 2644 |
1
⊢ 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) |