MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmooval Structured version   Visualization version   Unicode version

Theorem nmooval 27618
Description: The operator norm function. (Contributed by NM, 27-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoofval.1  |-  X  =  ( BaseSet `  U )
nmoofval.2  |-  Y  =  ( BaseSet `  W )
nmoofval.3  |-  L  =  ( normCV `  U )
nmoofval.4  |-  M  =  ( normCV `  W )
nmoofval.6  |-  N  =  ( U normOpOLD W
)
Assertion
Ref Expression
nmooval  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  ( N `  T )  =  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( T `  z ) ) ) } ,  RR* ,  <  ) )
Distinct variable groups:    x, z, U    x, W, z    z, X    x, Y    x, T, z
Allowed substitution hints:    L( x, z)    M( x, z)    N( x, z)    X( x)    Y( z)

Proof of Theorem nmooval
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 nmoofval.2 . . . . 5  |-  Y  =  ( BaseSet `  W )
2 fvex 6201 . . . . 5  |-  ( BaseSet `  W )  e.  _V
31, 2eqeltri 2697 . . . 4  |-  Y  e. 
_V
4 nmoofval.1 . . . . 5  |-  X  =  ( BaseSet `  U )
5 fvex 6201 . . . . 5  |-  ( BaseSet `  U )  e.  _V
64, 5eqeltri 2697 . . . 4  |-  X  e. 
_V
73, 6elmap 7886 . . 3  |-  ( T  e.  ( Y  ^m  X )  <->  T : X
--> Y )
8 nmoofval.3 . . . . . 6  |-  L  =  ( normCV `  U )
9 nmoofval.4 . . . . . 6  |-  M  =  ( normCV `  W )
10 nmoofval.6 . . . . . 6  |-  N  =  ( U normOpOLD W
)
114, 1, 8, 9, 10nmoofval 27617 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  N  =  ( t  e.  ( Y  ^m  X
)  |->  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( t `  z ) ) ) } ,  RR* ,  <  ) ) )
1211fveq1d 6193 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( N `  T )  =  ( ( t  e.  ( Y  ^m  X )  |->  sup ( { x  |  E. z  e.  X  (
( L `  z
)  <_  1  /\  x  =  ( M `  ( t `  z
) ) ) } ,  RR* ,  <  )
) `  T )
)
13 fveq1 6190 . . . . . . . . . . 11  |-  ( t  =  T  ->  (
t `  z )  =  ( T `  z ) )
1413fveq2d 6195 . . . . . . . . . 10  |-  ( t  =  T  ->  ( M `  ( t `  z ) )  =  ( M `  ( T `  z )
) )
1514eqeq2d 2632 . . . . . . . . 9  |-  ( t  =  T  ->  (
x  =  ( M `
 ( t `  z ) )  <->  x  =  ( M `  ( T `
 z ) ) ) )
1615anbi2d 740 . . . . . . . 8  |-  ( t  =  T  ->  (
( ( L `  z )  <_  1  /\  x  =  ( M `  ( t `  z ) ) )  <-> 
( ( L `  z )  <_  1  /\  x  =  ( M `  ( T `  z ) ) ) ) )
1716rexbidv 3052 . . . . . . 7  |-  ( t  =  T  ->  ( E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( t `  z ) ) )  <->  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( T `  z ) ) ) ) )
1817abbidv 2741 . . . . . 6  |-  ( t  =  T  ->  { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( t `  z ) ) ) }  =  { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( T `  z ) ) ) } )
1918supeq1d 8352 . . . . 5  |-  ( t  =  T  ->  sup ( { x  |  E. z  e.  X  (
( L `  z
)  <_  1  /\  x  =  ( M `  ( t `  z
) ) ) } ,  RR* ,  <  )  =  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( T `  z ) ) ) } ,  RR* ,  <  ) )
20 eqid 2622 . . . . 5  |-  ( t  e.  ( Y  ^m  X )  |->  sup ( { x  |  E. z  e.  X  (
( L `  z
)  <_  1  /\  x  =  ( M `  ( t `  z
) ) ) } ,  RR* ,  <  )
)  =  ( t  e.  ( Y  ^m  X )  |->  sup ( { x  |  E. z  e.  X  (
( L `  z
)  <_  1  /\  x  =  ( M `  ( t `  z
) ) ) } ,  RR* ,  <  )
)
21 xrltso 11974 . . . . . 6  |-  <  Or  RR*
2221supex 8369 . . . . 5  |-  sup ( { x  |  E. z  e.  X  (
( L `  z
)  <_  1  /\  x  =  ( M `  ( T `  z
) ) ) } ,  RR* ,  <  )  e.  _V
2319, 20, 22fvmpt 6282 . . . 4  |-  ( T  e.  ( Y  ^m  X )  ->  (
( t  e.  ( Y  ^m  X ) 
|->  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( t `  z ) ) ) } ,  RR* ,  <  ) ) `  T )  =  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( T `  z )
) ) } ,  RR* ,  <  ) )
2412, 23sylan9eq 2676 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  /\  T  e.  ( Y  ^m  X ) )  -> 
( N `  T
)  =  sup ( { x  |  E. z  e.  X  (
( L `  z
)  <_  1  /\  x  =  ( M `  ( T `  z
) ) ) } ,  RR* ,  <  )
)
257, 24sylan2br 493 . 2  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  /\  T : X --> Y )  ->  ( N `  T )  =  sup ( { x  |  E. z  e.  X  (
( L `  z
)  <_  1  /\  x  =  ( M `  ( T `  z
) ) ) } ,  RR* ,  <  )
)
26253impa 1259 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  ( N `  T )  =  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( T `  z ) ) ) } ,  RR* ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   supcsup 8346   1c1 9937   RR*cxr 10073    < clt 10074    <_ cle 10075   NrmCVeccnv 27439   BaseSetcba 27441   normCVcnmcv 27445   normOpOLDcnmoo 27596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-nmoo 27600
This theorem is referenced by:  nmoxr  27621  nmooge0  27622  nmorepnf  27623  nmoolb  27626  nmoubi  27627  nmoo0  27646  nmlno0lem  27648
  Copyright terms: Public domain W3C validator