Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nulsslt Structured version   Visualization version   Unicode version

Theorem nulsslt 31908
Description: The empty set is less than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
nulsslt  |-  ( A  e.  ~P No  ->  (/) < <s A )

Proof of Theorem nulsslt
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . . 3  |-  ( A  e.  ~P No  ->  A  e.  _V )
2 0ex 4790 . . 3  |-  (/)  e.  _V
31, 2jctil 560 . 2  |-  ( A  e.  ~P No  ->  (
(/)  e.  _V  /\  A  e.  _V ) )
4 0ss 3972 . . . 4  |-  (/)  C_  No
54a1i 11 . . 3  |-  ( A  e.  ~P No  ->  (/)  C_  No )
6 elpwi 4168 . . 3  |-  ( A  e.  ~P No  ->  A 
C_  No )
7 ral0 4076 . . . 4  |-  A. x  e.  (/)  A. y  e.  A  x <s
y
87a1i 11 . . 3  |-  ( A  e.  ~P No  ->  A. x  e.  (/)  A. y  e.  A  x <s y )
95, 6, 83jca 1242 . 2  |-  ( A  e.  ~P No  ->  (
(/)  C_  No  /\  A  C_  No  /\  A. x  e.  (/)  A. y  e.  A  x <s
y ) )
10 brsslt 31900 . 2  |-  ( (/) < <s A  <->  ( ( (/) 
e.  _V  /\  A  e. 
_V )  /\  ( (/)  C_  No  /\  A  C_  No  /\  A. x  e.  (/)  A. y  e.  A  x <s y ) ) )
113, 9, 10sylanbrc 698 1  |-  ( A  e.  ~P No  ->  (/) < <s A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   class class class wbr 4653   Nocsur 31793   <scslt 31794   < <scsslt 31896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-sslt 31897
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator