MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlkovh Structured version   Visualization version   Unicode version

Theorem numclwwlkovh 27234
Description: Value of operation  H, mapping a vertex  v and a positive integer  n to the "closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) ... with v(n-2) =/= v" according to definition 7 in [Huneke] p. 2. (Contributed by Alexander van der Vekens, 26-Aug-2018.) (Revised by AV, 30-May-2021.)
Hypotheses
Ref Expression
numclwwlk.v  |-  V  =  (Vtx `  G )
numclwwlk.q  |-  Q  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n WWalksN  G )  |  ( ( w `  0
)  =  v  /\  ( lastS  `  w )  =/=  v ) } )
numclwwlk.f  |-  F  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } )
numclwwlk.h  |-  H  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( ( w `  0
)  =  v  /\  ( w `  (
n  -  2 ) )  =/=  ( w `
 0 ) ) } )
Assertion
Ref Expression
numclwwlkovh  |-  ( ( X  e.  V  /\  N  e.  NN )  ->  ( X H N )  =  { w  e.  ( N ClWWalksN  G )  |  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =/=  ( w `  0
) ) } )
Distinct variable groups:    n, G, v, w    n, N, v, w    n, V, v   
n, X, v, w   
w, V
Allowed substitution hints:    Q( w, v, n)    F( w, v, n)    H( w, v, n)

Proof of Theorem numclwwlkovh
StepHypRef Expression
1 oveq1 6657 . . . 4  |-  ( n  =  N  ->  (
n ClWWalksN  G )  =  ( N ClWWalksN  G ) )
21adantl 482 . . 3  |-  ( ( v  =  X  /\  n  =  N )  ->  ( n ClWWalksN  G )  =  ( N ClWWalksN  G ) )
3 eqeq2 2633 . . . 4  |-  ( v  =  X  ->  (
( w `  0
)  =  v  <->  ( w `  0 )  =  X ) )
4 oveq1 6657 . . . . . 6  |-  ( n  =  N  ->  (
n  -  2 )  =  ( N  - 
2 ) )
54fveq2d 6195 . . . . 5  |-  ( n  =  N  ->  (
w `  ( n  -  2 ) )  =  ( w `  ( N  -  2
) ) )
65neeq1d 2853 . . . 4  |-  ( n  =  N  ->  (
( w `  (
n  -  2 ) )  =/=  ( w `
 0 )  <->  ( w `  ( N  -  2 ) )  =/=  (
w `  0 )
) )
73, 6bi2anan9 917 . . 3  |-  ( ( v  =  X  /\  n  =  N )  ->  ( ( ( w `
 0 )  =  v  /\  ( w `
 ( n  - 
2 ) )  =/=  ( w `  0
) )  <->  ( (
w `  0 )  =  X  /\  (
w `  ( N  -  2 ) )  =/=  ( w ` 
0 ) ) ) )
82, 7rabeqbidv 3195 . 2  |-  ( ( v  =  X  /\  n  =  N )  ->  { w  e.  ( n ClWWalksN  G )  |  ( ( w `  0
)  =  v  /\  ( w `  (
n  -  2 ) )  =/=  ( w `
 0 ) ) }  =  { w  e.  ( N ClWWalksN  G )  |  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =/=  ( w `  0
) ) } )
9 numclwwlk.h . 2  |-  H  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( ( w `  0
)  =  v  /\  ( w `  (
n  -  2 ) )  =/=  ( w `
 0 ) ) } )
10 ovex 6678 . . 3  |-  ( N ClWWalksN  G )  e.  _V
1110rabex 4813 . 2  |-  { w  e.  ( N ClWWalksN  G )  |  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =/=  ( w `  0
) ) }  e.  _V
128, 9, 11ovmpt2a 6791 1  |-  ( ( X  e.  V  /\  N  e.  NN )  ->  ( X H N )  =  { w  e.  ( N ClWWalksN  G )  |  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =/=  ( w `  0
) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936    - cmin 10266   NNcn 11020   2c2 11070   lastS clsw 13292  Vtxcvtx 25874   WWalksN cwwlksn 26718   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  numclwwlk2lem1  27235  numclwlk2lem2f  27236  numclwlk2lem2f1o  27238  numclwwlk3lem  27241
  Copyright terms: Public domain W3C validator