MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk3lem Structured version   Visualization version   Unicode version

Theorem numclwwlk3lem 27241
Description: Lemma for numclwwlk3 27243. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 1-Jun-2021.)
Hypotheses
Ref Expression
numclwwlk.v  |-  V  =  (Vtx `  G )
numclwwlk.q  |-  Q  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n WWalksN  G )  |  ( ( w `  0
)  =  v  /\  ( lastS  `  w )  =/=  v ) } )
numclwwlk.f  |-  F  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } )
numclwwlk.h  |-  H  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( ( w `  0
)  =  v  /\  ( w `  (
n  -  2 ) )  =/=  ( w `
 0 ) ) } )
numclwwlk.c  |-  C  =  ( v  e.  V ,  n  e.  ( ZZ>=
`  2 )  |->  { w  e.  ( n ClWWalksN  G )  |  ( ( w `  0
)  =  v  /\  ( w `  (
n  -  2 ) )  =  ( w `
 0 ) ) } )
Assertion
Ref Expression
numclwwlk3lem  |-  ( ( ( G  e. FinUSGraph  /\  X  e.  V )  /\  N  e.  ( ZZ>= `  2 )
)  ->  ( # `  ( X F N ) )  =  ( ( # `  ( X H N ) )  +  (
# `  ( X C N ) ) ) )
Distinct variable groups:    n, G, v, w    n, N, v, w    n, V, v   
n, X, v, w   
w, V
Allowed substitution hints:    C( w, v, n)    Q( w, v, n)    F( w, v, n)    H( w, v, n)

Proof of Theorem numclwwlk3lem
StepHypRef Expression
1 simpr 477 . . . . 5  |-  ( ( G  e. FinUSGraph  /\  X  e.  V )  ->  X  e.  V )
2 eluz2nn 11726 . . . . 5  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN )
3 numclwwlk.f . . . . . 6  |-  F  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } )
43numclwwlkovf 27213 . . . . 5  |-  ( ( X  e.  V  /\  N  e.  NN )  ->  ( X F N )  =  { w  e.  ( N ClWWalksN  G )  |  ( w ` 
0 )  =  X } )
51, 2, 4syl2an 494 . . . 4  |-  ( ( ( G  e. FinUSGraph  /\  X  e.  V )  /\  N  e.  ( ZZ>= `  2 )
)  ->  ( X F N )  =  {
w  e.  ( N ClWWalksN  G )  |  ( w `  0 )  =  X } )
65fveq2d 6195 . . 3  |-  ( ( ( G  e. FinUSGraph  /\  X  e.  V )  /\  N  e.  ( ZZ>= `  2 )
)  ->  ( # `  ( X F N ) )  =  ( # `  {
w  e.  ( N ClWWalksN  G )  |  ( w `  0 )  =  X } ) )
7 pm4.42 1004 . . . . . . . 8  |-  ( ( w `  0 )  =  X  <->  ( (
( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =/=  ( w `
 0 ) )  \/  ( ( w `
 0 )  =  X  /\  -.  (
w `  ( N  -  2 ) )  =/=  ( w ` 
0 ) ) ) )
8 nne 2798 . . . . . . . . . 10  |-  ( -.  ( w `  ( N  -  2 ) )  =/=  ( w `
 0 )  <->  ( w `  ( N  -  2 ) )  =  ( w `  0 ) )
98anbi2i 730 . . . . . . . . 9  |-  ( ( ( w `  0
)  =  X  /\  -.  ( w `  ( N  -  2 ) )  =/=  ( w `
 0 ) )  <-> 
( ( w ` 
0 )  =  X  /\  ( w `  ( N  -  2
) )  =  ( w `  0 ) ) )
109orbi2i 541 . . . . . . . 8  |-  ( ( ( ( w ` 
0 )  =  X  /\  ( w `  ( N  -  2
) )  =/=  (
w `  0 )
)  \/  ( ( w `  0 )  =  X  /\  -.  ( w `  ( N  -  2 ) )  =/=  ( w `
 0 ) ) )  <->  ( ( ( w `  0 )  =  X  /\  (
w `  ( N  -  2 ) )  =/=  ( w ` 
0 ) )  \/  ( ( w ` 
0 )  =  X  /\  ( w `  ( N  -  2
) )  =  ( w `  0 ) ) ) )
117, 10bitri 264 . . . . . . 7  |-  ( ( w `  0 )  =  X  <->  ( (
( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =/=  ( w `
 0 ) )  \/  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =  ( w `  0
) ) ) )
1211a1i 11 . . . . . 6  |-  ( ( ( G  e. FinUSGraph  /\  X  e.  V )  /\  N  e.  ( ZZ>= `  2 )
)  ->  ( (
w `  0 )  =  X  <->  ( ( ( w `  0 )  =  X  /\  (
w `  ( N  -  2 ) )  =/=  ( w ` 
0 ) )  \/  ( ( w ` 
0 )  =  X  /\  ( w `  ( N  -  2
) )  =  ( w `  0 ) ) ) ) )
1312rabbidv 3189 . . . . 5  |-  ( ( ( G  e. FinUSGraph  /\  X  e.  V )  /\  N  e.  ( ZZ>= `  2 )
)  ->  { w  e.  ( N ClWWalksN  G )  |  ( w ` 
0 )  =  X }  =  { w  e.  ( N ClWWalksN  G )  |  ( ( ( w `  0 )  =  X  /\  (
w `  ( N  -  2 ) )  =/=  ( w ` 
0 ) )  \/  ( ( w ` 
0 )  =  X  /\  ( w `  ( N  -  2
) )  =  ( w `  0 ) ) ) } )
14 unrab 3898 . . . . 5  |-  ( { w  e.  ( N ClWWalksN  G )  |  ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =/=  ( w `
 0 ) ) }  u.  { w  e.  ( N ClWWalksN  G )  |  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =  ( w `  0
) ) } )  =  { w  e.  ( N ClWWalksN  G )  |  ( ( ( w `  0 )  =  X  /\  (
w `  ( N  -  2 ) )  =/=  ( w ` 
0 ) )  \/  ( ( w ` 
0 )  =  X  /\  ( w `  ( N  -  2
) )  =  ( w `  0 ) ) ) }
1513, 14syl6eqr 2674 . . . 4  |-  ( ( ( G  e. FinUSGraph  /\  X  e.  V )  /\  N  e.  ( ZZ>= `  2 )
)  ->  { w  e.  ( N ClWWalksN  G )  |  ( w ` 
0 )  =  X }  =  ( { w  e.  ( N ClWWalksN  G )  |  ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =/=  ( w `
 0 ) ) }  u.  { w  e.  ( N ClWWalksN  G )  |  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =  ( w `  0
) ) } ) )
1615fveq2d 6195 . . 3  |-  ( ( ( G  e. FinUSGraph  /\  X  e.  V )  /\  N  e.  ( ZZ>= `  2 )
)  ->  ( # `  {
w  e.  ( N ClWWalksN  G )  |  ( w `  0 )  =  X } )  =  ( # `  ( { w  e.  ( N ClWWalksN  G )  |  ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =/=  ( w `
 0 ) ) }  u.  { w  e.  ( N ClWWalksN  G )  |  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =  ( w `  0
) ) } ) ) )
17 numclwwlk.v . . . . . . 7  |-  V  =  (Vtx `  G )
1817fusgrvtxfi 26211 . . . . . . . 8  |-  ( G  e. FinUSGraph  ->  V  e.  Fin )
1918ad2antrr 762 . . . . . . 7  |-  ( ( ( G  e. FinUSGraph  /\  X  e.  V )  /\  N  e.  ( ZZ>= `  2 )
)  ->  V  e.  Fin )
2017, 19syl5eqelr 2706 . . . . . 6  |-  ( ( ( G  e. FinUSGraph  /\  X  e.  V )  /\  N  e.  ( ZZ>= `  2 )
)  ->  (Vtx `  G
)  e.  Fin )
21 clwwlksnfi 26913 . . . . . 6  |-  ( (Vtx
`  G )  e. 
Fin  ->  ( N ClWWalksN  G )  e.  Fin )
2220, 21syl 17 . . . . 5  |-  ( ( ( G  e. FinUSGraph  /\  X  e.  V )  /\  N  e.  ( ZZ>= `  2 )
)  ->  ( N ClWWalksN  G )  e.  Fin )
23 rabfi 8185 . . . . 5  |-  ( ( N ClWWalksN  G )  e.  Fin  ->  { w  e.  ( N ClWWalksN  G )  |  ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =/=  ( w `
 0 ) ) }  e.  Fin )
2422, 23syl 17 . . . 4  |-  ( ( ( G  e. FinUSGraph  /\  X  e.  V )  /\  N  e.  ( ZZ>= `  2 )
)  ->  { w  e.  ( N ClWWalksN  G )  |  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =/=  ( w `  0
) ) }  e.  Fin )
25 rabfi 8185 . . . . 5  |-  ( ( N ClWWalksN  G )  e.  Fin  ->  { w  e.  ( N ClWWalksN  G )  |  ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =  ( w `
 0 ) ) }  e.  Fin )
2622, 25syl 17 . . . 4  |-  ( ( ( G  e. FinUSGraph  /\  X  e.  V )  /\  N  e.  ( ZZ>= `  2 )
)  ->  { w  e.  ( N ClWWalksN  G )  |  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =  ( w `  0
) ) }  e.  Fin )
27 inrab 3899 . . . . 5  |-  ( { w  e.  ( N ClWWalksN  G )  |  ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =/=  ( w `
 0 ) ) }  i^i  { w  e.  ( N ClWWalksN  G )  |  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =  ( w `  0
) ) } )  =  { w  e.  ( N ClWWalksN  G )  |  ( ( ( w `  0 )  =  X  /\  (
w `  ( N  -  2 ) )  =/=  ( w ` 
0 ) )  /\  ( ( w ` 
0 )  =  X  /\  ( w `  ( N  -  2
) )  =  ( w `  0 ) ) ) }
28 neneq 2800 . . . . . . . . . . . 12  |-  ( ( w `  ( N  -  2 ) )  =/=  ( w ` 
0 )  ->  -.  ( w `  ( N  -  2 ) )  =  ( w `
 0 ) )
2928adantl 482 . . . . . . . . . . 11  |-  ( ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =/=  ( w `
 0 ) )  ->  -.  ( w `  ( N  -  2 ) )  =  ( w `  0 ) )
3029intnand 962 . . . . . . . . . 10  |-  ( ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =/=  ( w `
 0 ) )  ->  -.  ( (
w `  0 )  =  X  /\  (
w `  ( N  -  2 ) )  =  ( w ` 
0 ) ) )
3130imori 429 . . . . . . . . 9  |-  ( -.  ( ( w ` 
0 )  =  X  /\  ( w `  ( N  -  2
) )  =/=  (
w `  0 )
)  \/  -.  (
( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =  ( w `
 0 ) ) )
32 ianor 509 . . . . . . . . 9  |-  ( -.  ( ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =/=  ( w `  0
) )  /\  (
( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =  ( w `
 0 ) ) )  <->  ( -.  (
( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =/=  ( w `
 0 ) )  \/  -.  ( ( w `  0 )  =  X  /\  (
w `  ( N  -  2 ) )  =  ( w ` 
0 ) ) ) )
3331, 32mpbir 221 . . . . . . . 8  |-  -.  (
( ( w ` 
0 )  =  X  /\  ( w `  ( N  -  2
) )  =/=  (
w `  0 )
)  /\  ( (
w `  0 )  =  X  /\  (
w `  ( N  -  2 ) )  =  ( w ` 
0 ) ) )
3433a1i 11 . . . . . . 7  |-  ( ( ( ( G  e. FinUSGraph  /\  X  e.  V )  /\  N  e.  (
ZZ>= `  2 ) )  /\  w  e.  ( N ClWWalksN  G ) )  ->  -.  ( ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =/=  ( w `  0
) )  /\  (
( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =  ( w `
 0 ) ) ) )
3534ralrimiva 2966 . . . . . 6  |-  ( ( ( G  e. FinUSGraph  /\  X  e.  V )  /\  N  e.  ( ZZ>= `  2 )
)  ->  A. w  e.  ( N ClWWalksN  G )  -.  ( ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =/=  ( w `  0
) )  /\  (
( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =  ( w `
 0 ) ) ) )
36 rabeq0 3957 . . . . . 6  |-  ( { w  e.  ( N ClWWalksN  G )  |  ( ( ( w ` 
0 )  =  X  /\  ( w `  ( N  -  2
) )  =/=  (
w `  0 )
)  /\  ( (
w `  0 )  =  X  /\  (
w `  ( N  -  2 ) )  =  ( w ` 
0 ) ) ) }  =  (/)  <->  A. w  e.  ( N ClWWalksN  G )  -.  ( ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =/=  ( w `  0
) )  /\  (
( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =  ( w `
 0 ) ) ) )
3735, 36sylibr 224 . . . . 5  |-  ( ( ( G  e. FinUSGraph  /\  X  e.  V )  /\  N  e.  ( ZZ>= `  2 )
)  ->  { w  e.  ( N ClWWalksN  G )  |  ( ( ( w `  0 )  =  X  /\  (
w `  ( N  -  2 ) )  =/=  ( w ` 
0 ) )  /\  ( ( w ` 
0 )  =  X  /\  ( w `  ( N  -  2
) )  =  ( w `  0 ) ) ) }  =  (/) )
3827, 37syl5eq 2668 . . . 4  |-  ( ( ( G  e. FinUSGraph  /\  X  e.  V )  /\  N  e.  ( ZZ>= `  2 )
)  ->  ( {
w  e.  ( N ClWWalksN  G )  |  ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =/=  ( w `
 0 ) ) }  i^i  { w  e.  ( N ClWWalksN  G )  |  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =  ( w `  0
) ) } )  =  (/) )
39 hashun 13171 . . . 4  |-  ( ( { w  e.  ( N ClWWalksN  G )  |  ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =/=  ( w `
 0 ) ) }  e.  Fin  /\  { w  e.  ( N ClWWalksN  G )  |  ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =  ( w `
 0 ) ) }  e.  Fin  /\  ( { w  e.  ( N ClWWalksN  G )  |  ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =/=  ( w `
 0 ) ) }  i^i  { w  e.  ( N ClWWalksN  G )  |  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =  ( w `  0
) ) } )  =  (/) )  ->  ( # `
 ( { w  e.  ( N ClWWalksN  G )  |  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =/=  ( w `  0
) ) }  u.  { w  e.  ( N ClWWalksN  G )  |  ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =  ( w `
 0 ) ) } ) )  =  ( ( # `  {
w  e.  ( N ClWWalksN  G )  |  ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =/=  ( w `
 0 ) ) } )  +  (
# `  { w  e.  ( N ClWWalksN  G )  |  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =  ( w `  0
) ) } ) ) )
4024, 26, 38, 39syl3anc 1326 . . 3  |-  ( ( ( G  e. FinUSGraph  /\  X  e.  V )  /\  N  e.  ( ZZ>= `  2 )
)  ->  ( # `  ( { w  e.  ( N ClWWalksN  G )  |  ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =/=  ( w `
 0 ) ) }  u.  { w  e.  ( N ClWWalksN  G )  |  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =  ( w `  0
) ) } ) )  =  ( (
# `  { w  e.  ( N ClWWalksN  G )  |  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =/=  ( w `  0
) ) } )  +  ( # `  {
w  e.  ( N ClWWalksN  G )  |  ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =  ( w `
 0 ) ) } ) ) )
416, 16, 403eqtrd 2660 . 2  |-  ( ( ( G  e. FinUSGraph  /\  X  e.  V )  /\  N  e.  ( ZZ>= `  2 )
)  ->  ( # `  ( X F N ) )  =  ( ( # `  { w  e.  ( N ClWWalksN  G )  |  ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =/=  ( w `
 0 ) ) } )  +  (
# `  { w  e.  ( N ClWWalksN  G )  |  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =  ( w `  0
) ) } ) ) )
42 numclwwlk.q . . . . . 6  |-  Q  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n WWalksN  G )  |  ( ( w `  0
)  =  v  /\  ( lastS  `  w )  =/=  v ) } )
43 numclwwlk.h . . . . . 6  |-  H  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( ( w `  0
)  =  v  /\  ( w `  (
n  -  2 ) )  =/=  ( w `
 0 ) ) } )
4417, 42, 3, 43numclwwlkovh 27234 . . . . 5  |-  ( ( X  e.  V  /\  N  e.  NN )  ->  ( X H N )  =  { w  e.  ( N ClWWalksN  G )  |  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =/=  ( w `  0
) ) } )
451, 2, 44syl2an 494 . . . 4  |-  ( ( ( G  e. FinUSGraph  /\  X  e.  V )  /\  N  e.  ( ZZ>= `  2 )
)  ->  ( X H N )  =  {
w  e.  ( N ClWWalksN  G )  |  ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =/=  ( w `
 0 ) ) } )
4645fveq2d 6195 . . 3  |-  ( ( ( G  e. FinUSGraph  /\  X  e.  V )  /\  N  e.  ( ZZ>= `  2 )
)  ->  ( # `  ( X H N ) )  =  ( # `  {
w  e.  ( N ClWWalksN  G )  |  ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =/=  ( w `
 0 ) ) } ) )
47 numclwwlk.c . . . . . 6  |-  C  =  ( v  e.  V ,  n  e.  ( ZZ>=
`  2 )  |->  { w  e.  ( n ClWWalksN  G )  |  ( ( w `  0
)  =  v  /\  ( w `  (
n  -  2 ) )  =  ( w `
 0 ) ) } )
4847numclwwlkovg 27220 . . . . 5  |-  ( ( X  e.  V  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( X C N )  =  { w  e.  ( N ClWWalksN  G )  |  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =  ( w `  0
) ) } )
4948adantll 750 . . . 4  |-  ( ( ( G  e. FinUSGraph  /\  X  e.  V )  /\  N  e.  ( ZZ>= `  2 )
)  ->  ( X C N )  =  {
w  e.  ( N ClWWalksN  G )  |  ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =  ( w `
 0 ) ) } )
5049fveq2d 6195 . . 3  |-  ( ( ( G  e. FinUSGraph  /\  X  e.  V )  /\  N  e.  ( ZZ>= `  2 )
)  ->  ( # `  ( X C N ) )  =  ( # `  {
w  e.  ( N ClWWalksN  G )  |  ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =  ( w `
 0 ) ) } ) )
5146, 50oveq12d 6668 . 2  |-  ( ( ( G  e. FinUSGraph  /\  X  e.  V )  /\  N  e.  ( ZZ>= `  2 )
)  ->  ( ( # `
 ( X H N ) )  +  ( # `  ( X C N ) ) )  =  ( (
# `  { w  e.  ( N ClWWalksN  G )  |  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =/=  ( w `  0
) ) } )  +  ( # `  {
w  e.  ( N ClWWalksN  G )  |  ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =  ( w `
 0 ) ) } ) ) )
5241, 51eqtr4d 2659 1  |-  ( ( ( G  e. FinUSGraph  /\  X  e.  V )  /\  N  e.  ( ZZ>= `  2 )
)  ->  ( # `  ( X F N ) )  =  ( ( # `  ( X H N ) )  +  (
# `  ( X C N ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916    u. cun 3572    i^i cin 3573   (/)c0 3915   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Fincfn 7955   0cc0 9936    + caddc 9939    - cmin 10266   NNcn 11020   2c2 11070   ZZ>=cuz 11687   #chash 13117   lastS clsw 13292  Vtxcvtx 25874   FinUSGraph cfusgr 26208   WWalksN cwwlksn 26718   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-fusgr 26209  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  numclwwlk3OLD  27242  numclwwlk3  27243
  Copyright terms: Public domain W3C validator