MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvval Structured version   Visualization version   Unicode version

Theorem ocvval 20011
Description: Value of the orthocomplement of a subset (normally a subspace) of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvfval.v  |-  V  =  ( Base `  W
)
ocvfval.i  |-  .,  =  ( .i `  W )
ocvfval.f  |-  F  =  (Scalar `  W )
ocvfval.z  |-  .0.  =  ( 0g `  F )
ocvfval.o  |-  ._|_  =  ( ocv `  W )
Assertion
Ref Expression
ocvval  |-  ( S 
C_  V  ->  (  ._|_  `  S )  =  { x  e.  V  |  A. y  e.  S  ( x  .,  y )  =  .0.  } )
Distinct variable groups:    x, y,  .0.    x, V, y    x, W, y    x,  ., , y    x, S, y
Allowed substitution hints:    F( x, y)    ._|_ ( x, y)

Proof of Theorem ocvval
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 ocvfval.v . . . 4  |-  V  =  ( Base `  W
)
2 fvex 6201 . . . 4  |-  ( Base `  W )  e.  _V
31, 2eqeltri 2697 . . 3  |-  V  e. 
_V
43elpw2 4828 . 2  |-  ( S  e.  ~P V  <->  S  C_  V
)
5 ocvfval.i . . . . . 6  |-  .,  =  ( .i `  W )
6 ocvfval.f . . . . . 6  |-  F  =  (Scalar `  W )
7 ocvfval.z . . . . . 6  |-  .0.  =  ( 0g `  F )
8 ocvfval.o . . . . . 6  |-  ._|_  =  ( ocv `  W )
91, 5, 6, 7, 8ocvfval 20010 . . . . 5  |-  ( W  e.  _V  ->  ._|_  =  ( s  e.  ~P V  |->  { x  e.  V  |  A. y  e.  s  ( x  .,  y )  =  .0. 
} ) )
109fveq1d 6193 . . . 4  |-  ( W  e.  _V  ->  (  ._|_  `  S )  =  ( ( s  e. 
~P V  |->  { x  e.  V  |  A. y  e.  s  (
x  .,  y )  =  .0.  } ) `  S ) )
11 raleq 3138 . . . . . 6  |-  ( s  =  S  ->  ( A. y  e.  s 
( x  .,  y
)  =  .0.  <->  A. y  e.  S  ( x  .,  y )  =  .0.  ) )
1211rabbidv 3189 . . . . 5  |-  ( s  =  S  ->  { x  e.  V  |  A. y  e.  s  (
x  .,  y )  =  .0.  }  =  {
x  e.  V  |  A. y  e.  S  ( x  .,  y )  =  .0.  } )
13 eqid 2622 . . . . 5  |-  ( s  e.  ~P V  |->  { x  e.  V  |  A. y  e.  s 
( x  .,  y
)  =  .0.  }
)  =  ( s  e.  ~P V  |->  { x  e.  V  |  A. y  e.  s 
( x  .,  y
)  =  .0.  }
)
143rabex 4813 . . . . 5  |-  { x  e.  V  |  A. y  e.  S  (
x  .,  y )  =  .0.  }  e.  _V
1512, 13, 14fvmpt 6282 . . . 4  |-  ( S  e.  ~P V  -> 
( ( s  e. 
~P V  |->  { x  e.  V  |  A. y  e.  s  (
x  .,  y )  =  .0.  } ) `  S )  =  {
x  e.  V  |  A. y  e.  S  ( x  .,  y )  =  .0.  } )
1610, 15sylan9eq 2676 . . 3  |-  ( ( W  e.  _V  /\  S  e.  ~P V
)  ->  (  ._|_  `  S )  =  {
x  e.  V  |  A. y  e.  S  ( x  .,  y )  =  .0.  } )
17 0fv 6227 . . . . 5  |-  ( (/) `  S )  =  (/)
18 fvprc 6185 . . . . . . 7  |-  ( -.  W  e.  _V  ->  ( ocv `  W )  =  (/) )
198, 18syl5eq 2668 . . . . . 6  |-  ( -.  W  e.  _V  ->  ._|_ 
=  (/) )
2019fveq1d 6193 . . . . 5  |-  ( -.  W  e.  _V  ->  ( 
._|_  `  S )  =  ( (/) `  S ) )
21 ssrab2 3687 . . . . . 6  |-  { x  e.  V  |  A. y  e.  S  (
x  .,  y )  =  .0.  }  C_  V
22 fvprc 6185 . . . . . . 7  |-  ( -.  W  e.  _V  ->  (
Base `  W )  =  (/) )
231, 22syl5eq 2668 . . . . . 6  |-  ( -.  W  e.  _V  ->  V  =  (/) )
24 sseq0 3975 . . . . . 6  |-  ( ( { x  e.  V  |  A. y  e.  S  ( x  .,  y )  =  .0.  }  C_  V  /\  V  =  (/) )  ->  { x  e.  V  |  A. y  e.  S  ( x  .,  y )  =  .0. 
}  =  (/) )
2521, 23, 24sylancr 695 . . . . 5  |-  ( -.  W  e.  _V  ->  { x  e.  V  |  A. y  e.  S  ( x  .,  y )  =  .0.  }  =  (/) )
2617, 20, 253eqtr4a 2682 . . . 4  |-  ( -.  W  e.  _V  ->  ( 
._|_  `  S )  =  { x  e.  V  |  A. y  e.  S  ( x  .,  y )  =  .0.  } )
2726adantr 481 . . 3  |-  ( ( -.  W  e.  _V  /\  S  e.  ~P V
)  ->  (  ._|_  `  S )  =  {
x  e.  V  |  A. y  e.  S  ( x  .,  y )  =  .0.  } )
2816, 27pm2.61ian 831 . 2  |-  ( S  e.  ~P V  -> 
(  ._|_  `  S )  =  { x  e.  V  |  A. y  e.  S  ( x  .,  y )  =  .0.  } )
294, 28sylbir 225 1  |-  ( S 
C_  V  ->  (  ._|_  `  S )  =  { x  e.  V  |  A. y  e.  S  ( x  .,  y )  =  .0.  } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   Basecbs 15857  Scalarcsca 15944   .icip 15946   0gc0g 16100   ocvcocv 20004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-ocv 20007
This theorem is referenced by:  elocv  20012  ocv0  20021  csscld  23048  hlhilocv  37249
  Copyright terms: Public domain W3C validator