| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elocv | Structured version Visualization version Unicode version | ||
| Description: Elementhood in the orthocomplement of a subset (normally a subspace) of a pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| ocvfval.v |
|
| ocvfval.i |
|
| ocvfval.f |
|
| ocvfval.z |
|
| ocvfval.o |
|
| Ref | Expression |
|---|---|
| elocv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6220 |
. . . . 5
| |
| 2 | n0i 3920 |
. . . . . . . . 9
| |
| 3 | ocvfval.o |
. . . . . . . . . . . 12
| |
| 4 | fvprc 6185 |
. . . . . . . . . . . 12
| |
| 5 | 3, 4 | syl5eq 2668 |
. . . . . . . . . . 11
|
| 6 | 5 | fveq1d 6193 |
. . . . . . . . . 10
|
| 7 | 0fv 6227 |
. . . . . . . . . 10
| |
| 8 | 6, 7 | syl6eq 2672 |
. . . . . . . . 9
|
| 9 | 2, 8 | nsyl2 142 |
. . . . . . . 8
|
| 10 | ocvfval.v |
. . . . . . . . 9
| |
| 11 | ocvfval.i |
. . . . . . . . 9
| |
| 12 | ocvfval.f |
. . . . . . . . 9
| |
| 13 | ocvfval.z |
. . . . . . . . 9
| |
| 14 | 10, 11, 12, 13, 3 | ocvfval 20010 |
. . . . . . . 8
|
| 15 | 9, 14 | syl 17 |
. . . . . . 7
|
| 16 | 15 | dmeqd 5326 |
. . . . . 6
|
| 17 | fvex 6201 |
. . . . . . . . 9
| |
| 18 | 10, 17 | eqeltri 2697 |
. . . . . . . 8
|
| 19 | 18 | rabex 4813 |
. . . . . . 7
|
| 20 | eqid 2622 |
. . . . . . 7
| |
| 21 | 19, 20 | dmmpti 6023 |
. . . . . 6
|
| 22 | 16, 21 | syl6eq 2672 |
. . . . 5
|
| 23 | 1, 22 | eleqtrd 2703 |
. . . 4
|
| 24 | 23 | elpwid 4170 |
. . 3
|
| 25 | 10, 11, 12, 13, 3 | ocvval 20011 |
. . . . 5
|
| 26 | 25 | eleq2d 2687 |
. . . 4
|
| 27 | oveq1 6657 |
. . . . . . 7
| |
| 28 | 27 | eqeq1d 2624 |
. . . . . 6
|
| 29 | 28 | ralbidv 2986 |
. . . . 5
|
| 30 | 29 | elrab 3363 |
. . . 4
|
| 31 | 26, 30 | syl6bb 276 |
. . 3
|
| 32 | 24, 31 | biadan2 674 |
. 2
|
| 33 | 3anass 1042 |
. 2
| |
| 34 | 32, 33 | bitr4i 267 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-ocv 20007 |
| This theorem is referenced by: ocvi 20013 ocvss 20014 ocvocv 20015 ocvlss 20016 ocv2ss 20017 unocv 20024 iunocv 20025 obselocv 20072 clsocv 23049 pjthlem2 23209 |
| Copyright terms: Public domain | W3C validator |