MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppcmon Structured version   Visualization version   Unicode version

Theorem oppcmon 16398
Description: A monomorphism in the opposite category is an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
oppcmon.o  |-  O  =  (oppCat `  C )
oppcmon.c  |-  ( ph  ->  C  e.  Cat )
oppcmon.m  |-  M  =  (Mono `  O )
oppcmon.e  |-  E  =  (Epi `  C )
Assertion
Ref Expression
oppcmon  |-  ( ph  ->  ( X M Y )  =  ( Y E X ) )

Proof of Theorem oppcmon
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 oppcmon.e . . . 4  |-  E  =  (Epi `  C )
2 oppcmon.c . . . . 5  |-  ( ph  ->  C  e.  Cat )
3 fveq2 6191 . . . . . . . . . 10  |-  ( c  =  C  ->  (oppCat `  c )  =  (oppCat `  C ) )
4 oppcmon.o . . . . . . . . . 10  |-  O  =  (oppCat `  C )
53, 4syl6eqr 2674 . . . . . . . . 9  |-  ( c  =  C  ->  (oppCat `  c )  =  O )
65fveq2d 6195 . . . . . . . 8  |-  ( c  =  C  ->  (Mono `  (oppCat `  c )
)  =  (Mono `  O ) )
7 oppcmon.m . . . . . . . 8  |-  M  =  (Mono `  O )
86, 7syl6eqr 2674 . . . . . . 7  |-  ( c  =  C  ->  (Mono `  (oppCat `  c )
)  =  M )
98tposeqd 7355 . . . . . 6  |-  ( c  =  C  -> tpos  (Mono `  (oppCat `  c ) )  = tpos  M )
10 df-epi 16391 . . . . . 6  |- Epi  =  ( c  e.  Cat  |-> tpos  (Mono `  (oppCat `  c )
) )
11 fvex 6201 . . . . . . . 8  |-  (Mono `  O )  e.  _V
127, 11eqeltri 2697 . . . . . . 7  |-  M  e. 
_V
1312tposex 7386 . . . . . 6  |- tpos  M  e. 
_V
149, 10, 13fvmpt 6282 . . . . 5  |-  ( C  e.  Cat  ->  (Epi `  C )  = tpos  M
)
152, 14syl 17 . . . 4  |-  ( ph  ->  (Epi `  C )  = tpos  M )
161, 15syl5eq 2668 . . 3  |-  ( ph  ->  E  = tpos  M )
1716oveqd 6667 . 2  |-  ( ph  ->  ( Y E X )  =  ( Ytpos 
M X ) )
18 ovtpos 7367 . 2  |-  ( Ytpos 
M X )  =  ( X M Y )
1917, 18syl6req 2673 1  |-  ( ph  ->  ( X M Y )  =  ( Y E X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200   ` cfv 5888  (class class class)co 6650  tpos ctpos 7351   Catccat 16325  oppCatcoppc 16371  Monocmon 16388  Epicepi 16389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ov 6653  df-tpos 7352  df-epi 16391
This theorem is referenced by:  oppcepi  16399  isepi  16400  epii  16403  sectepi  16444  episect  16445  fthepi  16588
  Copyright terms: Public domain W3C validator