| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtypecbv | Structured version Visualization version Unicode version | ||
| Description: Lemma for ordtype 8437. (Contributed by Mario Carneiro, 26-Jun-2015.) |
| Ref | Expression |
|---|---|
| ordtypelem.1 |
|
| ordtypelem.2 |
|
| ordtypelem.3 |
|
| Ref | Expression |
|---|---|
| ordtypecbv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 |
. 2
| |
| 2 | ordtypelem.3 |
. . . 4
| |
| 3 | breq1 4656 |
. . . . . . . . . 10
| |
| 4 | 3 | notbid 308 |
. . . . . . . . 9
|
| 5 | 4 | cbvralv 3171 |
. . . . . . . 8
|
| 6 | breq2 4657 |
. . . . . . . . . 10
| |
| 7 | 6 | notbid 308 |
. . . . . . . . 9
|
| 8 | 7 | ralbidv 2986 |
. . . . . . . 8
|
| 9 | 5, 8 | syl5bb 272 |
. . . . . . 7
|
| 10 | 9 | cbvriotav 6622 |
. . . . . 6
|
| 11 | ordtypelem.2 |
. . . . . . . . 9
| |
| 12 | breq1 4656 |
. . . . . . . . . . . 12
| |
| 13 | 12 | cbvralv 3171 |
. . . . . . . . . . 11
|
| 14 | breq2 4657 |
. . . . . . . . . . . 12
| |
| 15 | 14 | ralbidv 2986 |
. . . . . . . . . . 11
|
| 16 | 13, 15 | syl5bb 272 |
. . . . . . . . . 10
|
| 17 | 16 | cbvrabv 3199 |
. . . . . . . . 9
|
| 18 | 11, 17 | eqtri 2644 |
. . . . . . . 8
|
| 19 | rneq 5351 |
. . . . . . . . . 10
| |
| 20 | 19 | raleqdv 3144 |
. . . . . . . . 9
|
| 21 | 20 | rabbidv 3189 |
. . . . . . . 8
|
| 22 | 18, 21 | syl5eq 2668 |
. . . . . . 7
|
| 23 | 22 | raleqdv 3144 |
. . . . . . 7
|
| 24 | 22, 23 | riotaeqbidv 6614 |
. . . . . 6
|
| 25 | 10, 24 | syl5eq 2668 |
. . . . 5
|
| 26 | 25 | cbvmptv 4750 |
. . . 4
|
| 27 | 2, 26 | eqtri 2644 |
. . 3
|
| 28 | recseq 7470 |
. . 3
| |
| 29 | 27, 28 | ax-mp 5 |
. 2
|
| 30 | 1, 29 | eqtr2i 2645 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-iota 5851 df-fv 5896 df-riota 6611 df-wrecs 7407 df-recs 7468 |
| This theorem is referenced by: oicl 8434 oif 8435 oiiso2 8436 ordtype 8437 oiiniseg 8438 ordtype2 8439 |
| Copyright terms: Public domain | W3C validator |