MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem1 Structured version   Visualization version   Unicode version

Theorem ordtypelem1 8423
Description: Lemma for ordtype 8437. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1  |-  F  = recs ( G )
ordtypelem.2  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
ordtypelem.3  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C  A. u  e.  C  -.  u R v ) )
ordtypelem.5  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
ordtypelem.6  |-  O  = OrdIso
( R ,  A
)
ordtypelem.7  |-  ( ph  ->  R  We  A )
ordtypelem.8  |-  ( ph  ->  R Se  A )
Assertion
Ref Expression
ordtypelem1  |-  ( ph  ->  O  =  ( F  |`  T ) )
Distinct variable groups:    v, u, C    h, j, t, u, v, w, x, z, R    A, h, j, t, u, v, w, x, z    t, O, u, v, x    ph, t, x    h, F, j, t, u, v, w, x, z
Allowed substitution hints:    ph( z, w, v, u, h, j)    C( x, z, w, t, h, j)    T( x, z, w, v, u, t, h, j)    G( x, z, w, v, u, t, h, j)    O( z, w, h, j)

Proof of Theorem ordtypelem1
StepHypRef Expression
1 ordtypelem.7 . . 3  |-  ( ph  ->  R  We  A )
2 ordtypelem.8 . . 3  |-  ( ph  ->  R Se  A )
3 iftrue 4092 . . 3  |-  ( ( R  We  A  /\  R Se  A )  ->  if ( ( R  We  A  /\  R Se  A ) ,  ( F  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t } ) ,  (/) )  =  ( F  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x
) z R t } ) )
41, 2, 3syl2anc 693 . 2  |-  ( ph  ->  if ( ( R  We  A  /\  R Se  A ) ,  ( F  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x
) z R t } ) ,  (/) )  =  ( F  |` 
{ x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t } ) )
5 ordtypelem.6 . . 3  |-  O  = OrdIso
( R ,  A
)
6 ordtypelem.2 . . . 4  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
7 ordtypelem.3 . . . 4  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C  A. u  e.  C  -.  u R v ) )
8 ordtypelem.1 . . . 4  |-  F  = recs ( G )
96, 7, 8dfoi 8416 . . 3  |- OrdIso ( R ,  A )  =  if ( ( R  We  A  /\  R Se  A ) ,  ( F  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x
) z R t } ) ,  (/) )
105, 9eqtri 2644 . 2  |-  O  =  if ( ( R  We  A  /\  R Se  A ) ,  ( F  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x
) z R t } ) ,  (/) )
11 ordtypelem.5 . . 3  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
1211reseq2i 5393 . 2  |-  ( F  |`  T )  =  ( F  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x
) z R t } )
134, 10, 123eqtr4g 2681 1  |-  ( ph  ->  O  =  ( F  |`  T ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200   (/)c0 3915   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   Se wse 5071    We wwe 5072   ran crn 5115    |` cres 5116   "cima 5117   Oncon0 5723   iota_crio 6610  recscrecs 7467  OrdIsocoi 8414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fv 5896  df-riota 6611  df-wrecs 7407  df-recs 7468  df-oi 8415
This theorem is referenced by:  ordtypelem4  8426  ordtypelem6  8428  ordtypelem7  8429  ordtypelem9  8431
  Copyright terms: Public domain W3C validator