MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otsndisj Structured version   Visualization version   Unicode version

Theorem otsndisj 4979
Description: The singletons consisting of ordered triples which have distinct third components are disjoint. (Contributed by Alexander van der Vekens, 10-Mar-2018.)
Assertion
Ref Expression
otsndisj  |-  ( ( A  e.  X  /\  B  e.  Y )  -> Disj  c  e.  V  { <. A ,  B , 
c >. } )
Distinct variable groups:    A, c    B, c    V, c    X, c    Y, c

Proof of Theorem otsndisj
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 otthg 4954 . . . . . . . . . . . 12  |-  ( ( A  e.  X  /\  B  e.  Y  /\  c  e.  V )  ->  ( <. A ,  B ,  c >.  =  <. A ,  B ,  d
>. 
<->  ( A  =  A  /\  B  =  B  /\  c  =  d ) ) )
213expa 1265 . . . . . . . . . . 11  |-  ( ( ( A  e.  X  /\  B  e.  Y
)  /\  c  e.  V )  ->  ( <. A ,  B , 
c >.  =  <. A ,  B ,  d >.  <->  ( A  =  A  /\  B  =  B  /\  c  =  d )
) )
3 simp3 1063 . . . . . . . . . . 11  |-  ( ( A  =  A  /\  B  =  B  /\  c  =  d )  ->  c  =  d )
42, 3syl6bi 243 . . . . . . . . . 10  |-  ( ( ( A  e.  X  /\  B  e.  Y
)  /\  c  e.  V )  ->  ( <. A ,  B , 
c >.  =  <. A ,  B ,  d >.  -> 
c  =  d ) )
54con3rr3 151 . . . . . . . . 9  |-  ( -.  c  =  d  -> 
( ( ( A  e.  X  /\  B  e.  Y )  /\  c  e.  V )  ->  -.  <. A ,  B , 
c >.  =  <. A ,  B ,  d >. ) )
65imp 445 . . . . . . . 8  |-  ( ( -.  c  =  d  /\  ( ( A  e.  X  /\  B  e.  Y )  /\  c  e.  V ) )  ->  -.  <. A ,  B ,  c >.  =  <. A ,  B ,  d
>. )
76neqned 2801 . . . . . . 7  |-  ( ( -.  c  =  d  /\  ( ( A  e.  X  /\  B  e.  Y )  /\  c  e.  V ) )  ->  <. A ,  B , 
c >.  =/=  <. A ,  B ,  d >. )
8 disjsn2 4247 . . . . . . 7  |-  ( <. A ,  B , 
c >.  =/=  <. A ,  B ,  d >.  -> 
( { <. A ,  B ,  c >. }  i^i  { <. A ,  B ,  d >. } )  =  (/) )
97, 8syl 17 . . . . . 6  |-  ( ( -.  c  =  d  /\  ( ( A  e.  X  /\  B  e.  Y )  /\  c  e.  V ) )  -> 
( { <. A ,  B ,  c >. }  i^i  { <. A ,  B ,  d >. } )  =  (/) )
109expcom 451 . . . . 5  |-  ( ( ( A  e.  X  /\  B  e.  Y
)  /\  c  e.  V )  ->  ( -.  c  =  d  ->  ( { <. A ,  B ,  c >. }  i^i  { <. A ,  B ,  d >. } )  =  (/) ) )
1110orrd 393 . . . 4  |-  ( ( ( A  e.  X  /\  B  e.  Y
)  /\  c  e.  V )  ->  (
c  =  d  \/  ( { <. A ,  B ,  c >. }  i^i  { <. A ,  B ,  d >. } )  =  (/) ) )
1211adantrr 753 . . 3  |-  ( ( ( A  e.  X  /\  B  e.  Y
)  /\  ( c  e.  V  /\  d  e.  V ) )  -> 
( c  =  d  \/  ( { <. A ,  B ,  c
>. }  i^i  { <. A ,  B ,  d
>. } )  =  (/) ) )
1312ralrimivva 2971 . 2  |-  ( ( A  e.  X  /\  B  e.  Y )  ->  A. c  e.  V  A. d  e.  V  ( c  =  d  \/  ( { <. A ,  B ,  c
>. }  i^i  { <. A ,  B ,  d
>. } )  =  (/) ) )
14 oteq3 4413 . . . 4  |-  ( c  =  d  ->  <. A ,  B ,  c >.  = 
<. A ,  B , 
d >. )
1514sneqd 4189 . . 3  |-  ( c  =  d  ->  { <. A ,  B ,  c
>. }  =  { <. A ,  B ,  d
>. } )
1615disjor 4634 . 2  |-  (Disj  c  e.  V  { <. A ,  B ,  c >. }  <->  A. c  e.  V  A. d  e.  V  ( c  =  d  \/  ( { <. A ,  B ,  c
>. }  i^i  { <. A ,  B ,  d
>. } )  =  (/) ) )
1713, 16sylibr 224 1  |-  ( ( A  e.  X  /\  B  e.  Y )  -> Disj  c  e.  V  { <. A ,  B , 
c >. } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    i^i cin 3573   (/)c0 3915   {csn 4177   <.cotp 4185  Disj wdisj 4620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rmo 2920  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186  df-disj 4621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator