| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > otsndisj | Structured version Visualization version Unicode version | ||
| Description: The singletons consisting of ordered triples which have distinct third components are disjoint. (Contributed by Alexander van der Vekens, 10-Mar-2018.) |
| Ref | Expression |
|---|---|
| otsndisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | otthg 4954 |
. . . . . . . . . . . 12
| |
| 2 | 1 | 3expa 1265 |
. . . . . . . . . . 11
|
| 3 | simp3 1063 |
. . . . . . . . . . 11
| |
| 4 | 2, 3 | syl6bi 243 |
. . . . . . . . . 10
|
| 5 | 4 | con3rr3 151 |
. . . . . . . . 9
|
| 6 | 5 | imp 445 |
. . . . . . . 8
|
| 7 | 6 | neqned 2801 |
. . . . . . 7
|
| 8 | disjsn2 4247 |
. . . . . . 7
| |
| 9 | 7, 8 | syl 17 |
. . . . . 6
|
| 10 | 9 | expcom 451 |
. . . . 5
|
| 11 | 10 | orrd 393 |
. . . 4
|
| 12 | 11 | adantrr 753 |
. . 3
|
| 13 | 12 | ralrimivva 2971 |
. 2
|
| 14 | oteq3 4413 |
. . . 4
| |
| 15 | 14 | sneqd 4189 |
. . 3
|
| 16 | 15 | disjor 4634 |
. 2
|
| 17 | 13, 16 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rmo 2920 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-ot 4186 df-disj 4621 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |