| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovg | Structured version Visualization version Unicode version | ||
| Description: The value of an operation class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| ovg.1 |
|
| ovg.2 |
|
| ovg.3 |
|
| ovg.4 |
|
| ovg.5 |
|
| Ref | Expression |
|---|---|
| ovg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 6653 |
. . . . 5
| |
| 2 | ovg.5 |
. . . . . 6
| |
| 3 | 2 | fveq1i 6192 |
. . . . 5
|
| 4 | 1, 3 | eqtri 2644 |
. . . 4
|
| 5 | 4 | eqeq1i 2627 |
. . 3
|
| 6 | eqeq2 2633 |
. . . . . . . . . 10
| |
| 7 | opeq2 4403 |
. . . . . . . . . . 11
| |
| 8 | 7 | eleq1d 2686 |
. . . . . . . . . 10
|
| 9 | 6, 8 | bibi12d 335 |
. . . . . . . . 9
|
| 10 | 9 | imbi2d 330 |
. . . . . . . 8
|
| 11 | ovg.4 |
. . . . . . . . . . . 12
| |
| 12 | 11 | ex 450 |
. . . . . . . . . . 11
|
| 13 | 12 | alrimivv 1856 |
. . . . . . . . . 10
|
| 14 | fnoprabg 6761 |
. . . . . . . . . 10
| |
| 15 | 13, 14 | syl 17 |
. . . . . . . . 9
|
| 16 | eleq1 2689 |
. . . . . . . . . . . 12
| |
| 17 | 16 | anbi1d 741 |
. . . . . . . . . . 11
|
| 18 | eleq1 2689 |
. . . . . . . . . . . 12
| |
| 19 | 18 | anbi2d 740 |
. . . . . . . . . . 11
|
| 20 | 17, 19 | opelopabg 4993 |
. . . . . . . . . 10
|
| 21 | 20 | ibir 257 |
. . . . . . . . 9
|
| 22 | fnopfvb 6237 |
. . . . . . . . 9
| |
| 23 | 15, 21, 22 | syl2an 494 |
. . . . . . . 8
|
| 24 | 10, 23 | vtoclg 3266 |
. . . . . . 7
|
| 25 | 24 | com12 32 |
. . . . . 6
|
| 26 | 25 | exp32 631 |
. . . . 5
|
| 27 | 26 | 3imp2 1282 |
. . . 4
|
| 28 | ovg.1 |
. . . . . . 7
| |
| 29 | 17, 28 | anbi12d 747 |
. . . . . 6
|
| 30 | ovg.2 |
. . . . . . 7
| |
| 31 | 19, 30 | anbi12d 747 |
. . . . . 6
|
| 32 | ovg.3 |
. . . . . . 7
| |
| 33 | 32 | anbi2d 740 |
. . . . . 6
|
| 34 | 29, 31, 33 | eloprabg 6748 |
. . . . 5
|
| 35 | 34 | adantl 482 |
. . . 4
|
| 36 | 27, 35 | bitrd 268 |
. . 3
|
| 37 | 5, 36 | syl5bb 272 |
. 2
|
| 38 | biidd 252 |
. . . . 5
| |
| 39 | 38 | bianabs 924 |
. . . 4
|
| 40 | 39 | 3adant3 1081 |
. . 3
|
| 41 | 40 | adantl 482 |
. 2
|
| 42 | 37, 41 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-ov 6653 df-oprab 6654 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |