| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pclclN | Structured version Visualization version Unicode version | ||
| Description: Closure of the projective subspace closure function. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pclfval.a |
|
| pclfval.s |
|
| pclfval.c |
|
| Ref | Expression |
|---|---|
| pclclN |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pclfval.a |
. . 3
| |
| 2 | pclfval.s |
. . 3
| |
| 3 | pclfval.c |
. . 3
| |
| 4 | 1, 2, 3 | pclvalN 35176 |
. 2
|
| 5 | 1, 2 | atpsubN 35039 |
. . . 4
|
| 6 | sseq2 3627 |
. . . . 5
| |
| 7 | 6 | intminss 4503 |
. . . 4
|
| 8 | 5, 7 | sylan 488 |
. . 3
|
| 9 | r19.26 3064 |
. . . . . . . 8
| |
| 10 | jcab 907 |
. . . . . . . . 9
| |
| 11 | 10 | ralbii 2980 |
. . . . . . . 8
|
| 12 | vex 3203 |
. . . . . . . . . 10
| |
| 13 | 12 | elintrab 4488 |
. . . . . . . . 9
|
| 14 | vex 3203 |
. . . . . . . . . 10
| |
| 15 | 14 | elintrab 4488 |
. . . . . . . . 9
|
| 16 | 13, 15 | anbi12i 733 |
. . . . . . . 8
|
| 17 | 9, 11, 16 | 3bitr4ri 293 |
. . . . . . 7
|
| 18 | simpll1 1100 |
. . . . . . . . . . . . . 14
| |
| 19 | simplr 792 |
. . . . . . . . . . . . . 14
| |
| 20 | simpll3 1102 |
. . . . . . . . . . . . . 14
| |
| 21 | simprl 794 |
. . . . . . . . . . . . . 14
| |
| 22 | simprr 796 |
. . . . . . . . . . . . . 14
| |
| 23 | simpll2 1101 |
. . . . . . . . . . . . . 14
| |
| 24 | eqid 2622 |
. . . . . . . . . . . . . . 15
| |
| 25 | eqid 2622 |
. . . . . . . . . . . . . . 15
| |
| 26 | 24, 25, 1, 2 | psubspi2N 35034 |
. . . . . . . . . . . . . 14
|
| 27 | 18, 19, 20, 21, 22, 23, 26 | syl33anc 1341 |
. . . . . . . . . . . . 13
|
| 28 | 27 | ex 450 |
. . . . . . . . . . . 12
|
| 29 | 28 | imim2d 57 |
. . . . . . . . . . 11
|
| 30 | 29 | ralimdva 2962 |
. . . . . . . . . 10
|
| 31 | vex 3203 |
. . . . . . . . . . 11
| |
| 32 | 31 | elintrab 4488 |
. . . . . . . . . 10
|
| 33 | 30, 32 | syl6ibr 242 |
. . . . . . . . 9
|
| 34 | 33 | 3exp 1264 |
. . . . . . . 8
|
| 35 | 34 | com24 95 |
. . . . . . 7
|
| 36 | 17, 35 | syl5bi 232 |
. . . . . 6
|
| 37 | 36 | ralrimdv 2968 |
. . . . 5
|
| 38 | 37 | ralrimivv 2970 |
. . . 4
|
| 39 | 38 | adantr 481 |
. . 3
|
| 40 | 24, 25, 1, 2 | ispsubsp 35031 |
. . . 4
|
| 41 | 40 | adantr 481 |
. . 3
|
| 42 | 8, 39, 41 | mpbir2and 957 |
. 2
|
| 43 | 4, 42 | eqeltrd 2701 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-psubsp 34789 df-pclN 35174 |
| This theorem is referenced by: pclunN 35184 pclfinN 35186 |
| Copyright terms: Public domain | W3C validator |