Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclunN Structured version   Visualization version   Unicode version

Theorem pclunN 35184
Description: The projective subspace closure of the union of two sets of atoms equals the closure of their projective sum. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclun.a  |-  A  =  ( Atoms `  K )
pclun.p  |-  .+  =  ( +P `  K
)
pclun.c  |-  U  =  ( PCl `  K
)
Assertion
Ref Expression
pclunN  |-  ( ( K  e.  V  /\  X  C_  A  /\  Y  C_  A )  ->  ( U `  ( X  u.  Y ) )  =  ( U `  ( X  .+  Y ) ) )

Proof of Theorem pclunN
StepHypRef Expression
1 simp1 1061 . . 3  |-  ( ( K  e.  V  /\  X  C_  A  /\  Y  C_  A )  ->  K  e.  V )
2 pclun.a . . . 4  |-  A  =  ( Atoms `  K )
3 pclun.p . . . 4  |-  .+  =  ( +P `  K
)
42, 3paddunssN 35094 . . 3  |-  ( ( K  e.  V  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  u.  Y )  C_  ( X  .+  Y
) )
52, 3paddssat 35100 . . 3  |-  ( ( K  e.  V  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  C_  A )
6 pclun.c . . . 4  |-  U  =  ( PCl `  K
)
72, 6pclssN 35180 . . 3  |-  ( ( K  e.  V  /\  ( X  u.  Y
)  C_  ( X  .+  Y )  /\  ( X  .+  Y )  C_  A )  ->  ( U `  ( X  u.  Y ) )  C_  ( U `  ( X 
.+  Y ) ) )
81, 4, 5, 7syl3anc 1326 . 2  |-  ( ( K  e.  V  /\  X  C_  A  /\  Y  C_  A )  ->  ( U `  ( X  u.  Y ) )  C_  ( U `  ( X 
.+  Y ) ) )
9 unss 3787 . . . . . . . . 9  |-  ( ( X  C_  A  /\  Y  C_  A )  <->  ( X  u.  Y )  C_  A
)
109biimpi 206 . . . . . . . 8  |-  ( ( X  C_  A  /\  Y  C_  A )  -> 
( X  u.  Y
)  C_  A )
11103adant1 1079 . . . . . . 7  |-  ( ( K  e.  V  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  u.  Y )  C_  A )
122, 6pclssidN 35181 . . . . . . 7  |-  ( ( K  e.  V  /\  ( X  u.  Y
)  C_  A )  ->  ( X  u.  Y
)  C_  ( U `  ( X  u.  Y
) ) )
131, 11, 12syl2anc 693 . . . . . 6  |-  ( ( K  e.  V  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  u.  Y )  C_  ( U `  ( X  u.  Y )
) )
14 unss 3787 . . . . . 6  |-  ( ( X  C_  ( U `  ( X  u.  Y
) )  /\  Y  C_  ( U `  ( X  u.  Y )
) )  <->  ( X  u.  Y )  C_  ( U `  ( X  u.  Y ) ) )
1513, 14sylibr 224 . . . . 5  |-  ( ( K  e.  V  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  C_  ( U `  ( X  u.  Y
) )  /\  Y  C_  ( U `  ( X  u.  Y )
) ) )
16 simp2 1062 . . . . . 6  |-  ( ( K  e.  V  /\  X  C_  A  /\  Y  C_  A )  ->  X  C_  A )
17 simp3 1063 . . . . . 6  |-  ( ( K  e.  V  /\  X  C_  A  /\  Y  C_  A )  ->  Y  C_  A )
18 eqid 2622 . . . . . . . 8  |-  ( PSubSp `  K )  =  (
PSubSp `  K )
192, 18, 6pclclN 35177 . . . . . . 7  |-  ( ( K  e.  V  /\  ( X  u.  Y
)  C_  A )  ->  ( U `  ( X  u.  Y )
)  e.  ( PSubSp `  K ) )
201, 11, 19syl2anc 693 . . . . . 6  |-  ( ( K  e.  V  /\  X  C_  A  /\  Y  C_  A )  ->  ( U `  ( X  u.  Y ) )  e.  ( PSubSp `  K )
)
212, 18, 3paddss 35131 . . . . . 6  |-  ( ( K  e.  V  /\  ( X  C_  A  /\  Y  C_  A  /\  ( U `  ( X  u.  Y ) )  e.  ( PSubSp `  K )
) )  ->  (
( X  C_  ( U `  ( X  u.  Y ) )  /\  Y  C_  ( U `  ( X  u.  Y
) ) )  <->  ( X  .+  Y )  C_  ( U `  ( X  u.  Y ) ) ) )
221, 16, 17, 20, 21syl13anc 1328 . . . . 5  |-  ( ( K  e.  V  /\  X  C_  A  /\  Y  C_  A )  ->  (
( X  C_  ( U `  ( X  u.  Y ) )  /\  Y  C_  ( U `  ( X  u.  Y
) ) )  <->  ( X  .+  Y )  C_  ( U `  ( X  u.  Y ) ) ) )
2315, 22mpbid 222 . . . 4  |-  ( ( K  e.  V  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  C_  ( U `  ( X  u.  Y ) ) )
242, 18psubssat 35040 . . . . 5  |-  ( ( K  e.  V  /\  ( U `  ( X  u.  Y ) )  e.  ( PSubSp `  K
) )  ->  ( U `  ( X  u.  Y ) )  C_  A )
251, 20, 24syl2anc 693 . . . 4  |-  ( ( K  e.  V  /\  X  C_  A  /\  Y  C_  A )  ->  ( U `  ( X  u.  Y ) )  C_  A )
262, 6pclssN 35180 . . . 4  |-  ( ( K  e.  V  /\  ( X  .+  Y ) 
C_  ( U `  ( X  u.  Y
) )  /\  ( U `  ( X  u.  Y ) )  C_  A )  ->  ( U `  ( X  .+  Y ) )  C_  ( U `  ( U `
 ( X  u.  Y ) ) ) )
271, 23, 25, 26syl3anc 1326 . . 3  |-  ( ( K  e.  V  /\  X  C_  A  /\  Y  C_  A )  ->  ( U `  ( X  .+  Y ) )  C_  ( U `  ( U `
 ( X  u.  Y ) ) ) )
2818, 6pclidN 35182 . . . 4  |-  ( ( K  e.  V  /\  ( U `  ( X  u.  Y ) )  e.  ( PSubSp `  K
) )  ->  ( U `  ( U `  ( X  u.  Y
) ) )  =  ( U `  ( X  u.  Y )
) )
291, 20, 28syl2anc 693 . . 3  |-  ( ( K  e.  V  /\  X  C_  A  /\  Y  C_  A )  ->  ( U `  ( U `  ( X  u.  Y
) ) )  =  ( U `  ( X  u.  Y )
) )
3027, 29sseqtrd 3641 . 2  |-  ( ( K  e.  V  /\  X  C_  A  /\  Y  C_  A )  ->  ( U `  ( X  .+  Y ) )  C_  ( U `  ( X  u.  Y ) ) )
318, 30eqssd 3620 1  |-  ( ( K  e.  V  /\  X  C_  A  /\  Y  C_  A )  ->  ( U `  ( X  u.  Y ) )  =  ( U `  ( X  .+  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    u. cun 3572    C_ wss 3574   ` cfv 5888  (class class class)co 6650   Atomscatm 34550   PSubSpcpsubsp 34782   +Pcpadd 35081   PClcpclN 35173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-psubsp 34789  df-padd 35082  df-pclN 35174
This theorem is referenced by:  pclun2N  35185
  Copyright terms: Public domain W3C validator