MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elintrab Structured version   Visualization version   Unicode version

Theorem elintrab 4488
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Oct-1999.)
Hypothesis
Ref Expression
inteqab.1  |-  A  e. 
_V
Assertion
Ref Expression
elintrab  |-  ( A  e.  |^| { x  e.  B  |  ph }  <->  A. x  e.  B  (
ph  ->  A  e.  x
) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem elintrab
StepHypRef Expression
1 inteqab.1 . . . 4  |-  A  e. 
_V
21elintab 4487 . . 3  |-  ( A  e.  |^| { x  |  ( x  e.  B  /\  ph ) }  <->  A. x
( ( x  e.  B  /\  ph )  ->  A  e.  x ) )
3 impexp 462 . . . 4  |-  ( ( ( x  e.  B  /\  ph )  ->  A  e.  x )  <->  ( x  e.  B  ->  ( ph  ->  A  e.  x ) ) )
43albii 1747 . . 3  |-  ( A. x ( ( x  e.  B  /\  ph )  ->  A  e.  x
)  <->  A. x ( x  e.  B  ->  ( ph  ->  A  e.  x
) ) )
52, 4bitri 264 . 2  |-  ( A  e.  |^| { x  |  ( x  e.  B  /\  ph ) }  <->  A. x
( x  e.  B  ->  ( ph  ->  A  e.  x ) ) )
6 df-rab 2921 . . . 4  |-  { x  e.  B  |  ph }  =  { x  |  ( x  e.  B  /\  ph ) }
76inteqi 4479 . . 3  |-  |^| { x  e.  B  |  ph }  =  |^| { x  |  ( x  e.  B  /\  ph ) }
87eleq2i 2693 . 2  |-  ( A  e.  |^| { x  e.  B  |  ph }  <->  A  e.  |^| { x  |  ( x  e.  B  /\  ph ) } )
9 df-ral 2917 . 2  |-  ( A. x  e.  B  ( ph  ->  A  e.  x
)  <->  A. x ( x  e.  B  ->  ( ph  ->  A  e.  x
) ) )
105, 8, 93bitr4i 292 1  |-  ( A  e.  |^| { x  e.  B  |  ph }  <->  A. x  e.  B  (
ph  ->  A  e.  x
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    e. wcel 1990   {cab 2608   A.wral 2912   {crab 2916   _Vcvv 3200   |^|cint 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-int 4476
This theorem is referenced by:  elintrabg  4489  intmin  4497  rankunb  8713  isf34lem4  9199  ist1-3  21153  filufint  21724  elspani  28402  ldsysgenld  30223  ldgenpisyslem1  30226  kur14lem9  31196  pclclN  35177  elpclN  35178  lcosslsp  42227
  Copyright terms: Public domain W3C validator