Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimltpnf Structured version   Visualization version   Unicode version

Theorem pimltpnf 40916
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +oo, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimltpnf.1  |-  F/ x ph
pimltpnf.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
Assertion
Ref Expression
pimltpnf  |-  ( ph  ->  { x  e.  A  |  B  < +oo }  =  A )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem pimltpnf
StepHypRef Expression
1 ssrab2 3687 . . 3  |-  { x  e.  A  |  B  < +oo }  C_  A
21a1i 11 . 2  |-  ( ph  ->  { x  e.  A  |  B  < +oo }  C_  A )
3 pimltpnf.1 . . . 4  |-  F/ x ph
4 simpr 477 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
5 pimltpnf.2 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
6 ltpnf 11954 . . . . . . . 8  |-  ( B  e.  RR  ->  B  < +oo )
75, 6syl 17 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  < +oo )
84, 7jca 554 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
x  e.  A  /\  B  < +oo ) )
9 rabid 3116 . . . . . 6  |-  ( x  e.  { x  e.  A  |  B  < +oo }  <->  ( x  e.  A  /\  B  < +oo ) )
108, 9sylibr 224 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  { x  e.  A  |  B  < +oo }
)
1110ex 450 . . . 4  |-  ( ph  ->  ( x  e.  A  ->  x  e.  { x  e.  A  |  B  < +oo } ) )
123, 11ralrimi 2957 . . 3  |-  ( ph  ->  A. x  e.  A  x  e.  { x  e.  A  |  B  < +oo } )
13 nfcv 2764 . . . 4  |-  F/_ x A
14 nfrab1 3122 . . . 4  |-  F/_ x { x  e.  A  |  B  < +oo }
1513, 14dfss3f 3595 . . 3  |-  ( A 
C_  { x  e.  A  |  B  < +oo }  <->  A. x  e.  A  x  e.  { x  e.  A  |  B  < +oo } )
1612, 15sylibr 224 . 2  |-  ( ph  ->  A  C_  { x  e.  A  |  B  < +oo } )
172, 16eqssd 3620 1  |-  ( ph  ->  { x  e.  A  |  B  < +oo }  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   A.wral 2912   {crab 2916    C_ wss 3574   class class class wbr 4653   RRcr 9935   +oocpnf 10071    < clt 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-pnf 10076  df-xr 10078  df-ltxr 10079
This theorem is referenced by:  pimltpnf2  40923
  Copyright terms: Public domain W3C validator