MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.21nd Structured version   Visualization version   Unicode version

Theorem pm5.21nd 941
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 20-Nov-2005.) (Proof shortened by Wolf Lammen, 4-Nov-2013.)
Hypotheses
Ref Expression
pm5.21nd.1  |-  ( (
ph  /\  ps )  ->  th )
pm5.21nd.2  |-  ( (
ph  /\  ch )  ->  th )
pm5.21nd.3  |-  ( th 
->  ( ps  <->  ch )
)
Assertion
Ref Expression
pm5.21nd  |-  ( ph  ->  ( ps  <->  ch )
)

Proof of Theorem pm5.21nd
StepHypRef Expression
1 pm5.21nd.1 . . 3  |-  ( (
ph  /\  ps )  ->  th )
21ex 450 . 2  |-  ( ph  ->  ( ps  ->  th )
)
3 pm5.21nd.2 . . 3  |-  ( (
ph  /\  ch )  ->  th )
43ex 450 . 2  |-  ( ph  ->  ( ch  ->  th )
)
5 pm5.21nd.3 . . 3  |-  ( th 
->  ( ps  <->  ch )
)
65a1i 11 . 2  |-  ( ph  ->  ( th  ->  ( ps 
<->  ch ) ) )
72, 4, 6pm5.21ndd 369 1  |-  ( ph  ->  ( ps  <->  ch )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  ideqg  5273  fvelimab  6253  brrpssg  6939  ordsucelsuc  7022  releldm2  7218  relbrtpos  7363  relelec  7787  elfiun  8336  fpwwe2lem2  9454  fpwwelem  9467  fzrev3  12406  elfzp12  12419  eqgval  17643  eltg  20761  eltg2  20762  cncnp2  21085  isref  21312  islocfin  21320  opeldifid  29412  isfne  32334  opelopab3  33511  isdivrngo  33749  islshpkrN  34407  dihatexv2  36628
  Copyright terms: Public domain W3C validator