MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqgval Structured version   Visualization version   Unicode version

Theorem eqgval 17643
Description: Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.) (Revised by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
eqgval.x  |-  X  =  ( Base `  G
)
eqgval.n  |-  N  =  ( invg `  G )
eqgval.p  |-  .+  =  ( +g  `  G )
eqgval.r  |-  R  =  ( G ~QG  S )
Assertion
Ref Expression
eqgval  |-  ( ( G  e.  V  /\  S  C_  X )  -> 
( A R B  <-> 
( A  e.  X  /\  B  e.  X  /\  ( ( N `  A )  .+  B
)  e.  S ) ) )

Proof of Theorem eqgval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqgval.x . . . 4  |-  X  =  ( Base `  G
)
2 eqgval.n . . . 4  |-  N  =  ( invg `  G )
3 eqgval.p . . . 4  |-  .+  =  ( +g  `  G )
4 eqgval.r . . . 4  |-  R  =  ( G ~QG  S )
51, 2, 3, 4eqgfval 17642 . . 3  |-  ( ( G  e.  V  /\  S  C_  X )  ->  R  =  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } )
65breqd 4664 . 2  |-  ( ( G  e.  V  /\  S  C_  X )  -> 
( A R B  <-> 
A { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } B ) )
7 brabv 6699 . . . 4  |-  ( A { <. x ,  y
>.  |  ( {
x ,  y } 
C_  X  /\  (
( N `  x
)  .+  y )  e.  S ) } B  ->  ( A  e.  _V  /\  B  e.  _V )
)
87adantl 482 . . 3  |-  ( ( ( G  e.  V  /\  S  C_  X )  /\  A { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } B )  -> 
( A  e.  _V  /\  B  e.  _V )
)
9 simpr1 1067 . . . . 5  |-  ( ( ( G  e.  V  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A ) 
.+  B )  e.  S ) )  ->  A  e.  X )
10 elex 3212 . . . . 5  |-  ( A  e.  X  ->  A  e.  _V )
119, 10syl 17 . . . 4  |-  ( ( ( G  e.  V  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A ) 
.+  B )  e.  S ) )  ->  A  e.  _V )
12 simpr2 1068 . . . . 5  |-  ( ( ( G  e.  V  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A ) 
.+  B )  e.  S ) )  ->  B  e.  X )
13 elex 3212 . . . . 5  |-  ( B  e.  X  ->  B  e.  _V )
1412, 13syl 17 . . . 4  |-  ( ( ( G  e.  V  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A ) 
.+  B )  e.  S ) )  ->  B  e.  _V )
1511, 14jca 554 . . 3  |-  ( ( ( G  e.  V  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A ) 
.+  B )  e.  S ) )  -> 
( A  e.  _V  /\  B  e.  _V )
)
16 vex 3203 . . . . . . . 8  |-  x  e. 
_V
17 vex 3203 . . . . . . . 8  |-  y  e. 
_V
1816, 17prss 4351 . . . . . . 7  |-  ( ( x  e.  X  /\  y  e.  X )  <->  { x ,  y } 
C_  X )
19 eleq1 2689 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  X  <->  A  e.  X ) )
20 eleq1 2689 . . . . . . . 8  |-  ( y  =  B  ->  (
y  e.  X  <->  B  e.  X ) )
2119, 20bi2anan9 917 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( x  e.  X  /\  y  e.  X )  <->  ( A  e.  X  /\  B  e.  X ) ) )
2218, 21syl5bbr 274 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  ( { x ,  y }  C_  X  <->  ( A  e.  X  /\  B  e.  X )
) )
23 fveq2 6191 . . . . . . . 8  |-  ( x  =  A  ->  ( N `  x )  =  ( N `  A ) )
24 id 22 . . . . . . . 8  |-  ( y  =  B  ->  y  =  B )
2523, 24oveqan12d 6669 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( N `  x )  .+  y
)  =  ( ( N `  A ) 
.+  B ) )
2625eleq1d 2686 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( ( N `
 x )  .+  y )  e.  S  <->  ( ( N `  A
)  .+  B )  e.  S ) )
2722, 26anbi12d 747 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( { x ,  y }  C_  X  /\  ( ( N `
 x )  .+  y )  e.  S
)  <->  ( ( A  e.  X  /\  B  e.  X )  /\  (
( N `  A
)  .+  B )  e.  S ) ) )
28 df-3an 1039 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A )  .+  B
)  e.  S )  <-> 
( ( A  e.  X  /\  B  e.  X )  /\  (
( N `  A
)  .+  B )  e.  S ) )
2927, 28syl6bbr 278 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( { x ,  y }  C_  X  /\  ( ( N `
 x )  .+  y )  e.  S
)  <->  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A ) 
.+  B )  e.  S ) ) )
30 eqid 2622 . . . 4  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) }
3129, 30brabga 4989 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } B  <->  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A ) 
.+  B )  e.  S ) ) )
328, 15, 31pm5.21nd 941 . 2  |-  ( ( G  e.  V  /\  S  C_  X )  -> 
( A { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } B  <->  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A ) 
.+  B )  e.  S ) ) )
336, 32bitrd 268 1  |-  ( ( G  e.  V  /\  S  C_  X )  -> 
( A R B  <-> 
( A  e.  X  /\  B  e.  X  /\  ( ( N `  A )  .+  B
)  e.  S ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   {cpr 4179   class class class wbr 4653   {copab 4712   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   invgcminusg 17423   ~QG cqg 17590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-eqg 17593
This theorem is referenced by:  eqger  17644  eqglact  17645  eqgid  17646  eqgcpbl  17648  gastacos  17743  orbstafun  17744  sylow2blem1  18035  sylow2blem3  18037  eqgabl  18240  tgpconncompeqg  21915  tgpconncomp  21916  qustgpopn  21923
  Copyright terms: Public domain W3C validator