MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ideqg Structured version   Visualization version   Unicode version

Theorem ideqg 5273
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ideqg  |-  ( B  e.  V  ->  ( A  _I  B  <->  A  =  B ) )

Proof of Theorem ideqg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3  |-  ( B  e.  V  ->  B  e.  V )
2 reli 5249 . . . 4  |-  Rel  _I
32brrelexi 5158 . . 3  |-  ( A  _I  B  ->  A  e.  _V )
41, 3anim12ci 591 . 2  |-  ( ( B  e.  V  /\  A  _I  B )  ->  ( A  e.  _V  /\  B  e.  V ) )
5 eleq1 2689 . . . . 5  |-  ( A  =  B  ->  ( A  e.  V  <->  B  e.  V ) )
65biimparc 504 . . . 4  |-  ( ( B  e.  V  /\  A  =  B )  ->  A  e.  V )
76elexd 3214 . . 3  |-  ( ( B  e.  V  /\  A  =  B )  ->  A  e.  _V )
8 simpl 473 . . 3  |-  ( ( B  e.  V  /\  A  =  B )  ->  B  e.  V )
97, 8jca 554 . 2  |-  ( ( B  e.  V  /\  A  =  B )  ->  ( A  e.  _V  /\  B  e.  V ) )
10 eqeq1 2626 . . 3  |-  ( x  =  A  ->  (
x  =  y  <->  A  =  y ) )
11 eqeq2 2633 . . 3  |-  ( y  =  B  ->  ( A  =  y  <->  A  =  B ) )
12 df-id 5024 . . 3  |-  _I  =  { <. x ,  y
>.  |  x  =  y }
1310, 11, 12brabg 4994 . 2  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( A  _I  B  <->  A  =  B ) )
144, 9, 13pm5.21nd 941 1  |-  ( B  e.  V  ->  ( A  _I  B  <->  A  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   class class class wbr 4653    _I cid 5023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121
This theorem is referenced by:  ideq  5274  ididg  5275  restidsingOLD  5459  poleloe  5527  isof1oidb  6574  pltval  16960  tglngne  25445  tgelrnln  25525  opeldifid  29412  ideq2  34078  idinxpss  34083  inxpssidinxp  34086  idinxpssinxp  34087  fourierdlem42  40366
  Copyright terms: Public domain W3C validator