| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > salpreimalegt | Structured version Visualization version Unicode version | ||
| Description: If all the preimages of right-closed, unbounded below intervals, belong to a sigma-algebra, then all the preimages of left-open, unbounded above intervals, belong to the sigma-algebra. (ii) implies (iii) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| salpreimalegt.x |
|
| salpreimalegt.a |
|
| salpreimalegt.s |
|
| salpreimalegt.u |
|
| salpreimalegt.b |
|
| salpreimalegt.p |
|
| salpreimalegt.c |
|
| Ref | Expression |
|---|---|
| salpreimalegt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | salpreimalegt.u |
. . . . . 6
| |
| 2 | 1 | eqcomi 2631 |
. . . . 5
|
| 3 | 2 | a1i 11 |
. . . 4
|
| 4 | 3 | difeq1d 3727 |
. . 3
|
| 5 | salpreimalegt.x |
. . . 4
| |
| 6 | salpreimalegt.b |
. . . 4
| |
| 7 | salpreimalegt.c |
. . . . 5
| |
| 8 | 7 | rexrd 10089 |
. . . 4
|
| 9 | 5, 6, 8 | preimalegt 40913 |
. . 3
|
| 10 | 4, 9 | eqtr2d 2657 |
. 2
|
| 11 | salpreimalegt.s |
. . 3
| |
| 12 | 7 | ancli 574 |
. . . 4
|
| 13 | nfcv 2764 |
. . . . 5
| |
| 14 | salpreimalegt.a |
. . . . . . 7
| |
| 15 | nfv 1843 |
. . . . . . 7
| |
| 16 | 14, 15 | nfan 1828 |
. . . . . 6
|
| 17 | nfv 1843 |
. . . . . 6
| |
| 18 | 16, 17 | nfim 1825 |
. . . . 5
|
| 19 | eleq1 2689 |
. . . . . . 7
| |
| 20 | 19 | anbi2d 740 |
. . . . . 6
|
| 21 | breq2 4657 |
. . . . . . . 8
| |
| 22 | 21 | rabbidv 3189 |
. . . . . . 7
|
| 23 | 22 | eleq1d 2686 |
. . . . . 6
|
| 24 | 20, 23 | imbi12d 334 |
. . . . 5
|
| 25 | salpreimalegt.p |
. . . . 5
| |
| 26 | 13, 18, 24, 25 | vtoclgf 3264 |
. . . 4
|
| 27 | 7, 12, 26 | sylc 65 |
. . 3
|
| 28 | 11, 27 | saldifcld 40565 |
. 2
|
| 29 | 10, 28 | eqeltrd 2701 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-cnv 5122 df-xr 10078 df-le 10080 df-salg 40529 |
| This theorem is referenced by: salpreimalelt 40938 issmfgt 40965 |
| Copyright terms: Public domain | W3C validator |