MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preleq Structured version   Visualization version   Unicode version

Theorem preleq 8514
Description: Equality of two unordered pairs when one member of each pair contains the other member. (Contributed by NM, 16-Oct-1996.)
Hypotheses
Ref Expression
preleq.1  |-  A  e. 
_V
preleq.2  |-  B  e. 
_V
preleq.3  |-  C  e. 
_V
preleq.4  |-  D  e. 
_V
Assertion
Ref Expression
preleq  |-  ( ( ( A  e.  B  /\  C  e.  D
)  /\  { A ,  B }  =  { C ,  D }
)  ->  ( A  =  C  /\  B  =  D ) )

Proof of Theorem preleq
StepHypRef Expression
1 preleq.1 . . . . . . 7  |-  A  e. 
_V
2 preleq.2 . . . . . . 7  |-  B  e. 
_V
3 preleq.3 . . . . . . 7  |-  C  e. 
_V
4 preleq.4 . . . . . . 7  |-  D  e. 
_V
51, 2, 3, 4preq12b 4382 . . . . . 6  |-  ( { A ,  B }  =  { C ,  D } 
<->  ( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C )
) )
65biimpi 206 . . . . 5  |-  ( { A ,  B }  =  { C ,  D }  ->  ( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C )
) )
76ord 392 . . . 4  |-  ( { A ,  B }  =  { C ,  D }  ->  ( -.  ( A  =  C  /\  B  =  D )  ->  ( A  =  D  /\  B  =  C ) ) )
8 en2lp 8510 . . . . 5  |-  -.  ( D  e.  C  /\  C  e.  D )
9 eleq12 2691 . . . . . 6  |-  ( ( A  =  D  /\  B  =  C )  ->  ( A  e.  B  <->  D  e.  C ) )
109anbi1d 741 . . . . 5  |-  ( ( A  =  D  /\  B  =  C )  ->  ( ( A  e.  B  /\  C  e.  D )  <->  ( D  e.  C  /\  C  e.  D ) ) )
118, 10mtbiri 317 . . . 4  |-  ( ( A  =  D  /\  B  =  C )  ->  -.  ( A  e.  B  /\  C  e.  D ) )
127, 11syl6 35 . . 3  |-  ( { A ,  B }  =  { C ,  D }  ->  ( -.  ( A  =  C  /\  B  =  D )  ->  -.  ( A  e.  B  /\  C  e.  D ) ) )
1312con4d 114 . 2  |-  ( { A ,  B }  =  { C ,  D }  ->  ( ( A  e.  B  /\  C  e.  D )  ->  ( A  =  C  /\  B  =  D )
) )
1413impcom 446 1  |-  ( ( ( A  e.  B  /\  C  e.  D
)  /\  { A ,  B }  =  { C ,  D }
)  ->  ( A  =  C  /\  B  =  D ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-eprel 5029  df-fr 5073
This theorem is referenced by:  opthreg  8515  dfac2  8953
  Copyright terms: Public domain W3C validator