| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opthreg | Structured version Visualization version Unicode version | ||
| Description: Theorem for alternate representation of ordered pairs, requiring the Axiom of Regularity ax-reg 8497 (via the preleq 8514 step). See df-op 4184 for a description of other ordered pair representations. Exercise 34 of [Enderton] p. 207. (Contributed by NM, 16-Oct-1996.) |
| Ref | Expression |
|---|---|
| preleq.1 |
|
| preleq.2 |
|
| preleq.3 |
|
| preleq.4 |
|
| Ref | Expression |
|---|---|
| opthreg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preleq.1 |
. . . . 5
| |
| 2 | 1 | prid1 4297 |
. . . 4
|
| 3 | preleq.3 |
. . . . 5
| |
| 4 | 3 | prid1 4297 |
. . . 4
|
| 5 | prex 4909 |
. . . . 5
| |
| 6 | prex 4909 |
. . . . 5
| |
| 7 | 1, 5, 3, 6 | preleq 8514 |
. . . 4
|
| 8 | 2, 4, 7 | mpanl12 718 |
. . 3
|
| 9 | preq1 4268 |
. . . . . 6
| |
| 10 | 9 | eqeq1d 2624 |
. . . . 5
|
| 11 | preleq.2 |
. . . . . 6
| |
| 12 | preleq.4 |
. . . . . 6
| |
| 13 | 11, 12 | preqr2 4381 |
. . . . 5
|
| 14 | 10, 13 | syl6bi 243 |
. . . 4
|
| 15 | 14 | imdistani 726 |
. . 3
|
| 16 | 8, 15 | syl 17 |
. 2
|
| 17 | preq1 4268 |
. . . 4
| |
| 18 | 17 | adantr 481 |
. . 3
|
| 19 | preq12 4270 |
. . . 4
| |
| 20 | 19 | preq2d 4275 |
. . 3
|
| 21 | 18, 20 | eqtrd 2656 |
. 2
|
| 22 | 16, 21 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-reg 8497 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-eprel 5029 df-fr 5073 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |