| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symg2bas | Structured version Visualization version Unicode version | ||
| Description: The symmetric group on a pair is the symmetric group S2 consisting of the identity and the transposition. This theorem is also valid if the elements are identical: then it collapses to theorem symg1bas 17816. (Contributed by AV, 9-Dec-2018.) |
| Ref | Expression |
|---|---|
| symg1bas.1 |
|
| symg1bas.2 |
|
| symg2bas.0 |
|
| Ref | Expression |
|---|---|
| symg2bas |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 |
. . . . 5
| |
| 2 | eqid 2622 |
. . . . 5
| |
| 3 | eqid 2622 |
. . . . 5
| |
| 4 | 1, 2, 3 | symg1bas 17816 |
. . . 4
|
| 5 | 4 | ad2antll 765 |
. . 3
|
| 6 | symg1bas.2 |
. . . 4
| |
| 7 | symg1bas.1 |
. . . . . 6
| |
| 8 | symg2bas.0 |
. . . . . . . 8
| |
| 9 | df-pr 4180 |
. . . . . . . . 9
| |
| 10 | sneq 4187 |
. . . . . . . . . . . 12
| |
| 11 | 10 | uneq1d 3766 |
. . . . . . . . . . 11
|
| 12 | 11 | adantr 481 |
. . . . . . . . . 10
|
| 13 | unidm 3756 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | syl6eq 2672 |
. . . . . . . . 9
|
| 15 | 9, 14 | syl5eq 2668 |
. . . . . . . 8
|
| 16 | 8, 15 | syl5eq 2668 |
. . . . . . 7
|
| 17 | 16 | fveq2d 6195 |
. . . . . 6
|
| 18 | 7, 17 | syl5eq 2668 |
. . . . 5
|
| 19 | 18 | fveq2d 6195 |
. . . 4
|
| 20 | 6, 19 | syl5eq 2668 |
. . 3
|
| 21 | id 22 |
. . . . . . . . 9
| |
| 22 | 21, 21 | opeq12d 4410 |
. . . . . . . 8
|
| 23 | 22 | adantr 481 |
. . . . . . 7
|
| 24 | 23 | preq1d 4274 |
. . . . . 6
|
| 25 | eqid 2622 |
. . . . . . 7
| |
| 26 | opex 4932 |
. . . . . . . 8
| |
| 27 | 26, 26, 26 | preqsn 4393 |
. . . . . . 7
|
| 28 | 25, 25, 27 | mpbir2an 955 |
. . . . . 6
|
| 29 | 24, 28 | syl6eq 2672 |
. . . . 5
|
| 30 | opeq1 4402 |
. . . . . . . 8
| |
| 31 | opeq2 4403 |
. . . . . . . 8
| |
| 32 | 30, 31 | preq12d 4276 |
. . . . . . 7
|
| 33 | 32, 28 | syl6eq 2672 |
. . . . . 6
|
| 34 | 33 | adantr 481 |
. . . . 5
|
| 35 | 29, 34 | preq12d 4276 |
. . . 4
|
| 36 | eqid 2622 |
. . . . 5
| |
| 37 | snex 4908 |
. . . . . 6
| |
| 38 | 37, 37, 37 | preqsn 4393 |
. . . . 5
|
| 39 | 36, 36, 38 | mpbir2an 955 |
. . . 4
|
| 40 | 35, 39 | syl6eq 2672 |
. . 3
|
| 41 | 5, 20, 40 | 3eqtr4d 2666 |
. 2
|
| 42 | fvex 6201 |
. . . . 5
| |
| 43 | 6, 42 | eqeltri 2697 |
. . . 4
|
| 44 | 43 | a1i 11 |
. . 3
|
| 45 | df-ne 2795 |
. . . . . . . 8
| |
| 46 | 45 | biimpri 218 |
. . . . . . 7
|
| 47 | 46 | anim2i 593 |
. . . . . 6
|
| 48 | df-3an 1039 |
. . . . . 6
| |
| 49 | 47, 48 | sylibr 224 |
. . . . 5
|
| 50 | 49 | ancoms 469 |
. . . 4
|
| 51 | 7, 6, 8 | symg2hash 17817 |
. . . 4
|
| 52 | 50, 51 | syl 17 |
. . 3
|
| 53 | id 22 |
. . . . . . . 8
| |
| 54 | 53 | ancri 575 |
. . . . . . 7
|
| 55 | id 22 |
. . . . . . . 8
| |
| 56 | 55 | ancri 575 |
. . . . . . 7
|
| 57 | 54, 56 | anim12i 590 |
. . . . . 6
|
| 58 | id 22 |
. . . . . . . 8
| |
| 59 | 58 | ancri 575 |
. . . . . . 7
|
| 60 | 45, 59 | sylbir 225 |
. . . . . 6
|
| 61 | f1oprg 6181 |
. . . . . . 7
| |
| 62 | 61 | imp 445 |
. . . . . 6
|
| 63 | 57, 60, 62 | syl2anr 495 |
. . . . 5
|
| 64 | eqidd 2623 |
. . . . . . 7
| |
| 65 | id 22 |
. . . . . . 7
| |
| 66 | 64, 65, 65 | f1oeq123d 6133 |
. . . . . 6
|
| 67 | 8, 66 | ax-mp 5 |
. . . . 5
|
| 68 | 63, 67 | sylibr 224 |
. . . 4
|
| 69 | prex 4909 |
. . . . 5
| |
| 70 | 7, 6 | elsymgbas2 17801 |
. . . . 5
|
| 71 | 69, 70 | ax-mp 5 |
. . . 4
|
| 72 | 68, 71 | sylibr 224 |
. . 3
|
| 73 | f1oprswap 6180 |
. . . . . 6
| |
| 74 | eqidd 2623 |
. . . . . . . 8
| |
| 75 | 74, 65, 65 | f1oeq123d 6133 |
. . . . . . 7
|
| 76 | 8, 75 | ax-mp 5 |
. . . . . 6
|
| 77 | 73, 76 | sylibr 224 |
. . . . 5
|
| 78 | 77 | adantl 482 |
. . . 4
|
| 79 | prex 4909 |
. . . . 5
| |
| 80 | 7, 6 | elsymgbas2 17801 |
. . . . 5
|
| 81 | 79, 80 | ax-mp 5 |
. . . 4
|
| 82 | 78, 81 | sylibr 224 |
. . 3
|
| 83 | opex 4932 |
. . . . . 6
| |
| 84 | 83, 26 | pm3.2i 471 |
. . . . 5
|
| 85 | opex 4932 |
. . . . . 6
| |
| 86 | opex 4932 |
. . . . . 6
| |
| 87 | 85, 86 | pm3.2i 471 |
. . . . 5
|
| 88 | 84, 87 | pm3.2i 471 |
. . . 4
|
| 89 | opthg2 4948 |
. . . . . . . . . . 11
| |
| 90 | eqtr 2641 |
. . . . . . . . . . 11
| |
| 91 | 89, 90 | syl6bi 243 |
. . . . . . . . . 10
|
| 92 | 91 | necon3d 2815 |
. . . . . . . . 9
|
| 93 | 92 | com12 32 |
. . . . . . . 8
|
| 94 | 45, 93 | sylbir 225 |
. . . . . . 7
|
| 95 | 94 | imp 445 |
. . . . . 6
|
| 96 | 54 | adantr 481 |
. . . . . . . . . . . 12
|
| 97 | opthg 4946 |
. . . . . . . . . . . 12
| |
| 98 | 96, 97 | syl 17 |
. . . . . . . . . . 11
|
| 99 | simpl 473 |
. . . . . . . . . . 11
| |
| 100 | 98, 99 | syl6bi 243 |
. . . . . . . . . 10
|
| 101 | 100 | necon3d 2815 |
. . . . . . . . 9
|
| 102 | 101 | com12 32 |
. . . . . . . 8
|
| 103 | 45, 102 | sylbir 225 |
. . . . . . 7
|
| 104 | 103 | imp 445 |
. . . . . 6
|
| 105 | 95, 104 | jca 554 |
. . . . 5
|
| 106 | 105 | orcd 407 |
. . . 4
|
| 107 | prneimg 4388 |
. . . 4
| |
| 108 | 88, 106, 107 | mpsyl 68 |
. . 3
|
| 109 | hash2prd 13257 |
. . . 4
| |
| 110 | 109 | imp 445 |
. . 3
|
| 111 | 44, 52, 72, 82, 108, 110 | syl23anc 1333 |
. 2
|
| 112 | 41, 111 | pm2.61ian 831 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-fz 12327 df-seq 12802 df-fac 13061 df-bc 13090 df-hash 13118 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-plusg 15954 df-tset 15960 df-symg 17798 |
| This theorem is referenced by: psgnprfval 17941 m2detleiblem1 20430 m2detleiblem5 20431 m2detleiblem6 20432 m2detleiblem3 20435 m2detleiblem4 20436 m2detleib 20437 |
| Copyright terms: Public domain | W3C validator |