| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > propssopi | Structured version Visualization version Unicode version | ||
| Description: If a pair of ordered pairs is a subset of an ordered pair, their first components are equal. (Contributed by AV, 20-Sep-2020.) |
| Ref | Expression |
|---|---|
| snopeqop.a |
|
| snopeqop.b |
|
| snopeqop.c |
|
| snopeqop.d |
|
| propeqop.e |
|
| propeqop.f |
|
| Ref | Expression |
|---|---|
| propssopi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | propeqop.e |
. . . 4
| |
| 2 | propeqop.f |
. . . 4
| |
| 3 | 1, 2 | dfop 4401 |
. . 3
|
| 4 | 3 | sseq2i 3630 |
. 2
|
| 5 | sspr 4366 |
. . 3
| |
| 6 | opex 4932 |
. . . . . . 7
| |
| 7 | 6 | prnz 4310 |
. . . . . 6
|
| 8 | eqneqall 2805 |
. . . . . 6
| |
| 9 | 7, 8 | mpi 20 |
. . . . 5
|
| 10 | opex 4932 |
. . . . . . 7
| |
| 11 | snex 4908 |
. . . . . . 7
| |
| 12 | 6, 10, 11 | preqsn 4393 |
. . . . . 6
|
| 13 | snopeqop.a |
. . . . . . . . 9
| |
| 14 | snopeqop.b |
. . . . . . . . 9
| |
| 15 | 13, 14 | opth 4945 |
. . . . . . . 8
|
| 16 | simpl 473 |
. . . . . . . 8
| |
| 17 | 15, 16 | sylbi 207 |
. . . . . . 7
|
| 18 | 17 | adantr 481 |
. . . . . 6
|
| 19 | 12, 18 | sylbi 207 |
. . . . 5
|
| 20 | 9, 19 | jaoi 394 |
. . . 4
|
| 21 | prex 4909 |
. . . . . . 7
| |
| 22 | 6, 10, 21 | preqsn 4393 |
. . . . . 6
|
| 23 | 16 | a1d 25 |
. . . . . . . 8
|
| 24 | 15, 23 | sylbi 207 |
. . . . . . 7
|
| 25 | 24 | imp 445 |
. . . . . 6
|
| 26 | 22, 25 | sylbi 207 |
. . . . 5
|
| 27 | 3 | eqcomi 2631 |
. . . . . . . 8
|
| 28 | 27 | eqeq2i 2634 |
. . . . . . 7
|
| 29 | snopeqop.c |
. . . . . . . 8
| |
| 30 | snopeqop.d |
. . . . . . . 8
| |
| 31 | 13, 14, 29, 30, 1, 2 | propeqop 4970 |
. . . . . . 7
|
| 32 | 28, 31 | bitri 264 |
. . . . . 6
|
| 33 | simpll 790 |
. . . . . 6
| |
| 34 | 32, 33 | sylbi 207 |
. . . . 5
|
| 35 | 26, 34 | jaoi 394 |
. . . 4
|
| 36 | 20, 35 | jaoi 394 |
. . 3
|
| 37 | 5, 36 | sylbi 207 |
. 2
|
| 38 | 4, 37 | sylbi 207 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 |
| This theorem is referenced by: iunopeqop 4981 |
| Copyright terms: Public domain | W3C validator |