| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preq12bg | Structured version Visualization version Unicode version | ||
| Description: Closed form of preq12b 4382. (Contributed by Scott Fenton, 28-Mar-2014.) |
| Ref | Expression |
|---|---|
| preq12bg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 4268 |
. . . . . . 7
| |
| 2 | 1 | eqeq1d 2624 |
. . . . . 6
|
| 3 | eqeq1 2626 |
. . . . . . . 8
| |
| 4 | 3 | anbi1d 741 |
. . . . . . 7
|
| 5 | eqeq1 2626 |
. . . . . . . 8
| |
| 6 | 5 | anbi1d 741 |
. . . . . . 7
|
| 7 | 4, 6 | orbi12d 746 |
. . . . . 6
|
| 8 | 2, 7 | bibi12d 335 |
. . . . 5
|
| 9 | 8 | imbi2d 330 |
. . . 4
|
| 10 | preq2 4269 |
. . . . . . 7
| |
| 11 | 10 | eqeq1d 2624 |
. . . . . 6
|
| 12 | eqeq1 2626 |
. . . . . . . 8
| |
| 13 | 12 | anbi2d 740 |
. . . . . . 7
|
| 14 | eqeq1 2626 |
. . . . . . . 8
| |
| 15 | 14 | anbi2d 740 |
. . . . . . 7
|
| 16 | 13, 15 | orbi12d 746 |
. . . . . 6
|
| 17 | 11, 16 | bibi12d 335 |
. . . . 5
|
| 18 | 17 | imbi2d 330 |
. . . 4
|
| 19 | preq1 4268 |
. . . . . . 7
| |
| 20 | 19 | eqeq2d 2632 |
. . . . . 6
|
| 21 | eqeq2 2633 |
. . . . . . . 8
| |
| 22 | 21 | anbi1d 741 |
. . . . . . 7
|
| 23 | eqeq2 2633 |
. . . . . . . 8
| |
| 24 | 23 | anbi2d 740 |
. . . . . . 7
|
| 25 | 22, 24 | orbi12d 746 |
. . . . . 6
|
| 26 | 20, 25 | bibi12d 335 |
. . . . 5
|
| 27 | 26 | imbi2d 330 |
. . . 4
|
| 28 | preq2 4269 |
. . . . . . 7
| |
| 29 | 28 | eqeq2d 2632 |
. . . . . 6
|
| 30 | eqeq2 2633 |
. . . . . . . 8
| |
| 31 | 30 | anbi2d 740 |
. . . . . . 7
|
| 32 | eqeq2 2633 |
. . . . . . . 8
| |
| 33 | 32 | anbi1d 741 |
. . . . . . 7
|
| 34 | 31, 33 | orbi12d 746 |
. . . . . 6
|
| 35 | vex 3203 |
. . . . . . 7
| |
| 36 | vex 3203 |
. . . . . . 7
| |
| 37 | vex 3203 |
. . . . . . 7
| |
| 38 | vex 3203 |
. . . . . . 7
| |
| 39 | 35, 36, 37, 38 | preq12b 4382 |
. . . . . 6
|
| 40 | 29, 34, 39 | vtoclbg 3267 |
. . . . 5
|
| 41 | 40 | a1i 11 |
. . . 4
|
| 42 | 9, 18, 27, 41 | vtocl3ga 3276 |
. . 3
|
| 43 | 42 | 3expa 1265 |
. 2
|
| 44 | 43 | impr 649 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: prneimg 4388 pr1eqbg 4390 preqsnd 4392 pythagtriplem2 15522 pythagtrip 15539 upgrpredgv 26034 uhgr2edg 26100 usgredg2v 26119 2pthon3v 26839 prsprel 41737 |
| Copyright terms: Public domain | W3C validator |