MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2detleib Structured version   Visualization version   Unicode version

Theorem m2detleib 20437
Description: Leibniz' Formula for 2x2-matrices. (Contributed by AV, 21-Dec-2018.) (Revised by AV, 26-Dec-2018.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
m2detleib.n  |-  N  =  { 1 ,  2 }
m2detleib.d  |-  D  =  ( N maDet  R )
m2detleib.a  |-  A  =  ( N Mat  R )
m2detleib.b  |-  B  =  ( Base `  A
)
m2detleib.m  |-  .-  =  ( -g `  R )
m2detleib.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
m2detleib  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  ( D `  M )  =  ( ( ( 1 M 1 ) 
.x.  ( 2 M 2 ) )  .-  ( ( 2 M 1 )  .x.  (
1 M 2 ) ) ) )

Proof of Theorem m2detleib
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 m2detleib.d . . . 4  |-  D  =  ( N maDet  R )
2 m2detleib.a . . . 4  |-  A  =  ( N Mat  R )
3 m2detleib.b . . . 4  |-  B  =  ( Base `  A
)
4 eqid 2622 . . . 4  |-  ( Base `  ( SymGrp `  N )
)  =  ( Base `  ( SymGrp `  N )
)
5 eqid 2622 . . . 4  |-  ( ZRHom `  R )  =  ( ZRHom `  R )
6 eqid 2622 . . . 4  |-  (pmSgn `  N )  =  (pmSgn `  N )
7 m2detleib.t . . . 4  |-  .x.  =  ( .r `  R )
8 eqid 2622 . . . 4  |-  (mulGrp `  R )  =  (mulGrp `  R )
91, 2, 3, 4, 5, 6, 7, 8mdetleib1 20397 . . 3  |-  ( M  e.  B  ->  ( D `  M )  =  ( R  gsumg  ( k  e.  ( Base `  ( SymGrp `
 N ) ) 
|->  ( ( ( ZRHom `  R ) `  (
(pmSgn `  N ) `  k ) )  .x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( k `  n
) M n ) ) ) ) ) ) )
109adantl 482 . 2  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  ( D `  M )  =  ( R  gsumg  ( k  e.  ( Base `  ( SymGrp `
 N ) ) 
|->  ( ( ( ZRHom `  R ) `  (
(pmSgn `  N ) `  k ) )  .x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( k `  n
) M n ) ) ) ) ) ) )
11 eqid 2622 . . 3  |-  ( Base `  R )  =  (
Base `  R )
12 eqid 2622 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
13 ringcmn 18581 . . . 4  |-  ( R  e.  Ring  ->  R  e. CMnd
)
1413adantr 481 . . 3  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  R  e. CMnd )
15 m2detleib.n . . . . . 6  |-  N  =  { 1 ,  2 }
16 prfi 8235 . . . . . 6  |-  { 1 ,  2 }  e.  Fin
1715, 16eqeltri 2697 . . . . 5  |-  N  e. 
Fin
18 eqid 2622 . . . . . 6  |-  ( SymGrp `  N )  =  (
SymGrp `  N )
1918, 4symgbasfi 17806 . . . . 5  |-  ( N  e.  Fin  ->  ( Base `  ( SymGrp `  N
) )  e.  Fin )
2017, 19ax-mp 5 . . . 4  |-  ( Base `  ( SymGrp `  N )
)  e.  Fin
2120a1i 11 . . 3  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  ( Base `  ( SymGrp `  N
) )  e.  Fin )
22 simpl 473 . . . . 5  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  R  e.  Ring )
2322adantr 481 . . . 4  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  k  e.  (
Base `  ( SymGrp `  N ) ) )  ->  R  e.  Ring )
244, 6, 5zrhpsgnelbas 19940 . . . . . 6  |-  ( ( R  e.  Ring  /\  N  e.  Fin  /\  k  e.  ( Base `  ( SymGrp `
 N ) ) )  ->  ( ( ZRHom `  R ) `  ( (pmSgn `  N ) `  k ) )  e.  ( Base `  R
) )
2517, 24mp3an2 1412 . . . . 5  |-  ( ( R  e.  Ring  /\  k  e.  ( Base `  ( SymGrp `
 N ) ) )  ->  ( ( ZRHom `  R ) `  ( (pmSgn `  N ) `  k ) )  e.  ( Base `  R
) )
2625adantlr 751 . . . 4  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  k  e.  (
Base `  ( SymGrp `  N ) ) )  ->  ( ( ZRHom `  R ) `  (
(pmSgn `  N ) `  k ) )  e.  ( Base `  R
) )
27 simpr 477 . . . . 5  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  k  e.  (
Base `  ( SymGrp `  N ) ) )  ->  k  e.  (
Base `  ( SymGrp `  N ) ) )
28 simpr 477 . . . . . 6  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  M  e.  B )
2928adantr 481 . . . . 5  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  k  e.  (
Base `  ( SymGrp `  N ) ) )  ->  M  e.  B
)
3015, 4, 2, 3, 8m2detleiblem2 20434 . . . . 5  |-  ( ( R  e.  Ring  /\  k  e.  ( Base `  ( SymGrp `
 N ) )  /\  M  e.  B
)  ->  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( k `  n ) M n ) ) )  e.  ( Base `  R
) )
3123, 27, 29, 30syl3anc 1326 . . . 4  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  k  e.  (
Base `  ( SymGrp `  N ) ) )  ->  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( k `  n ) M n ) ) )  e.  ( Base `  R
) )
3211, 7ringcl 18561 . . . 4  |-  ( ( R  e.  Ring  /\  (
( ZRHom `  R
) `  ( (pmSgn `  N ) `  k
) )  e.  (
Base `  R )  /\  ( (mulGrp `  R
)  gsumg  ( n  e.  N  |->  ( ( k `  n ) M n ) ) )  e.  ( Base `  R
) )  ->  (
( ( ZRHom `  R ) `  (
(pmSgn `  N ) `  k ) )  .x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( k `  n
) M n ) ) ) )  e.  ( Base `  R
) )
3323, 26, 31, 32syl3anc 1326 . . 3  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  k  e.  (
Base `  ( SymGrp `  N ) ) )  ->  ( ( ( ZRHom `  R ) `  ( (pmSgn `  N
) `  k )
)  .x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( k `  n ) M n ) ) ) )  e.  ( Base `  R
) )
34 opex 4932 . . . . . . . 8  |-  <. 1 ,  1 >.  e.  _V
35 opex 4932 . . . . . . . 8  |-  <. 2 ,  2 >.  e.  _V
3634, 35pm3.2i 471 . . . . . . 7  |-  ( <.
1 ,  1 >.  e.  _V  /\  <. 2 ,  2 >.  e.  _V )
37 opex 4932 . . . . . . . 8  |-  <. 1 ,  2 >.  e.  _V
38 opex 4932 . . . . . . . 8  |-  <. 2 ,  1 >.  e.  _V
3937, 38pm3.2i 471 . . . . . . 7  |-  ( <.
1 ,  2 >.  e.  _V  /\  <. 2 ,  1 >.  e.  _V )
4036, 39pm3.2i 471 . . . . . 6  |-  ( (
<. 1 ,  1
>.  e.  _V  /\  <. 2 ,  2 >.  e. 
_V )  /\  ( <. 1 ,  2 >.  e.  _V  /\  <. 2 ,  1 >.  e.  _V ) )
41 1ne2 11240 . . . . . . . . . 10  |-  1  =/=  2
4241olci 406 . . . . . . . . 9  |-  ( 1  =/=  1  \/  1  =/=  2 )
43 1ex 10035 . . . . . . . . . 10  |-  1  e.  _V
4443, 43opthne 4951 . . . . . . . . 9  |-  ( <.
1 ,  1 >.  =/=  <. 1 ,  2
>. 
<->  ( 1  =/=  1  \/  1  =/=  2
) )
4542, 44mpbir 221 . . . . . . . 8  |-  <. 1 ,  1 >.  =/=  <. 1 ,  2 >.
4641orci 405 . . . . . . . . 9  |-  ( 1  =/=  2  \/  1  =/=  1 )
4743, 43opthne 4951 . . . . . . . . 9  |-  ( <.
1 ,  1 >.  =/=  <. 2 ,  1
>. 
<->  ( 1  =/=  2  \/  1  =/=  1
) )
4846, 47mpbir 221 . . . . . . . 8  |-  <. 1 ,  1 >.  =/=  <. 2 ,  1 >.
4945, 48pm3.2i 471 . . . . . . 7  |-  ( <.
1 ,  1 >.  =/=  <. 1 ,  2
>.  /\  <. 1 ,  1
>.  =/=  <. 2 ,  1
>. )
5049orci 405 . . . . . 6  |-  ( (
<. 1 ,  1
>.  =/=  <. 1 ,  2
>.  /\  <. 1 ,  1
>.  =/=  <. 2 ,  1
>. )  \/  ( <. 2 ,  2 >.  =/=  <. 1 ,  2
>.  /\  <. 2 ,  2
>.  =/=  <. 2 ,  1
>. ) )
5140, 50pm3.2i 471 . . . . 5  |-  ( ( ( <. 1 ,  1
>.  e.  _V  /\  <. 2 ,  2 >.  e. 
_V )  /\  ( <. 1 ,  2 >.  e.  _V  /\  <. 2 ,  1 >.  e.  _V ) )  /\  (
( <. 1 ,  1
>.  =/=  <. 1 ,  2
>.  /\  <. 1 ,  1
>.  =/=  <. 2 ,  1
>. )  \/  ( <. 2 ,  2 >.  =/=  <. 1 ,  2
>.  /\  <. 2 ,  2
>.  =/=  <. 2 ,  1
>. ) ) )
5251a1i 11 . . . 4  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
( ( <. 1 ,  1 >.  e.  _V  /\ 
<. 2 ,  2
>.  e.  _V )  /\  ( <. 1 ,  2
>.  e.  _V  /\  <. 2 ,  1 >.  e. 
_V ) )  /\  ( ( <. 1 ,  1 >.  =/=  <. 1 ,  2 >.  /\ 
<. 1 ,  1
>.  =/=  <. 2 ,  1
>. )  \/  ( <. 2 ,  2 >.  =/=  <. 1 ,  2
>.  /\  <. 2 ,  2
>.  =/=  <. 2 ,  1
>. ) ) ) )
53 prneimg 4388 . . . . 5  |-  ( ( ( <. 1 ,  1
>.  e.  _V  /\  <. 2 ,  2 >.  e. 
_V )  /\  ( <. 1 ,  2 >.  e.  _V  /\  <. 2 ,  1 >.  e.  _V ) )  ->  (
( ( <. 1 ,  1 >.  =/=  <. 1 ,  2 >.  /\ 
<. 1 ,  1
>.  =/=  <. 2 ,  1
>. )  \/  ( <. 2 ,  2 >.  =/=  <. 1 ,  2
>.  /\  <. 2 ,  2
>.  =/=  <. 2 ,  1
>. ) )  ->  { <. 1 ,  1 >. , 
<. 2 ,  2
>. }  =/=  { <. 1 ,  2 >. , 
<. 2 ,  1
>. } ) )
5453imp 445 . . . 4  |-  ( ( ( ( <. 1 ,  1 >.  e.  _V  /\ 
<. 2 ,  2
>.  e.  _V )  /\  ( <. 1 ,  2
>.  e.  _V  /\  <. 2 ,  1 >.  e. 
_V ) )  /\  ( ( <. 1 ,  1 >.  =/=  <. 1 ,  2 >.  /\ 
<. 1 ,  1
>.  =/=  <. 2 ,  1
>. )  \/  ( <. 2 ,  2 >.  =/=  <. 1 ,  2
>.  /\  <. 2 ,  2
>.  =/=  <. 2 ,  1
>. ) ) )  ->  { <. 1 ,  1
>. ,  <. 2 ,  2 >. }  =/=  { <. 1 ,  2 >. ,  <. 2 ,  1
>. } )
55 disjsn2 4247 . . . 4  |-  ( {
<. 1 ,  1
>. ,  <. 2 ,  2 >. }  =/=  { <. 1 ,  2 >. ,  <. 2 ,  1
>. }  ->  ( { { <. 1 ,  1
>. ,  <. 2 ,  2 >. } }  i^i  { { <. 1 ,  2
>. ,  <. 2 ,  1 >. } } )  =  (/) )
5652, 54, 553syl 18 . . 3  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  ( { { <. 1 ,  1
>. ,  <. 2 ,  2 >. } }  i^i  { { <. 1 ,  2
>. ,  <. 2 ,  1 >. } } )  =  (/) )
57 2nn 11185 . . . . . 6  |-  2  e.  NN
5818, 4, 15symg2bas 17818 . . . . . 6  |-  ( ( 1  e.  _V  /\  2  e.  NN )  ->  ( Base `  ( SymGrp `
 N ) )  =  { { <. 1 ,  1 >. , 
<. 2 ,  2
>. } ,  { <. 1 ,  2 >. , 
<. 2 ,  1
>. } } )
5943, 57, 58mp2an 708 . . . . 5  |-  ( Base `  ( SymGrp `  N )
)  =  { { <. 1 ,  1 >. ,  <. 2 ,  2
>. } ,  { <. 1 ,  2 >. , 
<. 2 ,  1
>. } }
60 df-pr 4180 . . . . 5  |-  { { <. 1 ,  1 >. ,  <. 2 ,  2
>. } ,  { <. 1 ,  2 >. , 
<. 2 ,  1
>. } }  =  ( { { <. 1 ,  1 >. ,  <. 2 ,  2 >. } }  u.  { { <. 1 ,  2 >. ,  <. 2 ,  1
>. } } )
6159, 60eqtri 2644 . . . 4  |-  ( Base `  ( SymGrp `  N )
)  =  ( { { <. 1 ,  1
>. ,  <. 2 ,  2 >. } }  u.  { { <. 1 ,  2
>. ,  <. 2 ,  1 >. } } )
6261a1i 11 . . 3  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  ( Base `  ( SymGrp `  N
) )  =  ( { { <. 1 ,  1 >. ,  <. 2 ,  2 >. } }  u.  { { <. 1 ,  2 >. ,  <. 2 ,  1
>. } } ) )
6311, 12, 14, 21, 33, 56, 62gsummptfidmsplit 18330 . 2  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  ( R  gsumg  ( k  e.  (
Base `  ( SymGrp `  N ) )  |->  ( ( ( ZRHom `  R ) `  (
(pmSgn `  N ) `  k ) )  .x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( k `  n
) M n ) ) ) ) ) )  =  ( ( R  gsumg  ( k  e.  { { <. 1 ,  1
>. ,  <. 2 ,  2 >. } }  |->  ( ( ( ZRHom `  R ) `  (
(pmSgn `  N ) `  k ) )  .x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( k `  n
) M n ) ) ) ) ) ) ( +g  `  R
) ( R  gsumg  ( k  e.  { { <. 1 ,  2 >. , 
<. 2 ,  1
>. } }  |->  ( ( ( ZRHom `  R
) `  ( (pmSgn `  N ) `  k
) )  .x.  (
(mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( k `  n
) M n ) ) ) ) ) ) ) )
64 ringmnd 18556 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Mnd )
6564adantr 481 . . . . 5  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  R  e.  Mnd )
66 prex 4909 . . . . . 6  |-  { <. 1 ,  1 >. , 
<. 2 ,  2
>. }  e.  _V
6766a1i 11 . . . . 5  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  { <. 1 ,  1 >. , 
<. 2 ,  2
>. }  e.  _V )
6866prid1 4297 . . . . . . . . 9  |-  { <. 1 ,  1 >. , 
<. 2 ,  2
>. }  e.  { { <. 1 ,  1 >. ,  <. 2 ,  2
>. } ,  { <. 1 ,  2 >. , 
<. 2 ,  1
>. } }
6968, 59eleqtrri 2700 . . . . . . . 8  |-  { <. 1 ,  1 >. , 
<. 2 ,  2
>. }  e.  ( Base `  ( SymGrp `  N )
)
7069a1i 11 . . . . . . 7  |-  ( M  e.  B  ->  { <. 1 ,  1 >. , 
<. 2 ,  2
>. }  e.  ( Base `  ( SymGrp `  N )
) )
714, 6, 5zrhpsgnelbas 19940 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  N  e.  Fin  /\  { <. 1 ,  1 >. , 
<. 2 ,  2
>. }  e.  ( Base `  ( SymGrp `  N )
) )  ->  (
( ZRHom `  R
) `  ( (pmSgn `  N ) `  { <. 1 ,  1 >. ,  <. 2 ,  2
>. } ) )  e.  ( Base `  R
) )
7217, 71mp3an2 1412 . . . . . . 7  |-  ( ( R  e.  Ring  /\  { <. 1 ,  1 >. ,  <. 2 ,  2
>. }  e.  ( Base `  ( SymGrp `  N )
) )  ->  (
( ZRHom `  R
) `  ( (pmSgn `  N ) `  { <. 1 ,  1 >. ,  <. 2 ,  2
>. } ) )  e.  ( Base `  R
) )
7370, 72sylan2 491 . . . . . 6  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
( ZRHom `  R
) `  ( (pmSgn `  N ) `  { <. 1 ,  1 >. ,  <. 2 ,  2
>. } ) )  e.  ( Base `  R
) )
7415, 4, 2, 3, 8m2detleiblem2 20434 . . . . . . 7  |-  ( ( R  e.  Ring  /\  { <. 1 ,  1 >. ,  <. 2 ,  2
>. }  e.  ( Base `  ( SymGrp `  N )
)  /\  M  e.  B )  ->  (
(mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  1 >. ,  <. 2 ,  2 >. } `
 n ) M n ) ) )  e.  ( Base `  R
) )
7569, 74mp3an2 1412 . . . . . 6  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
(mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  1 >. ,  <. 2 ,  2 >. } `
 n ) M n ) ) )  e.  ( Base `  R
) )
7611, 7ringcl 18561 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
( ZRHom `  R
) `  ( (pmSgn `  N ) `  { <. 1 ,  1 >. ,  <. 2 ,  2
>. } ) )  e.  ( Base `  R
)  /\  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  1 >. , 
<. 2 ,  2
>. } `  n ) M n ) ) )  e.  ( Base `  R ) )  -> 
( ( ( ZRHom `  R ) `  (
(pmSgn `  N ) `  { <. 1 ,  1
>. ,  <. 2 ,  2 >. } ) ) 
.x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  1 >. , 
<. 2 ,  2
>. } `  n ) M n ) ) ) )  e.  (
Base `  R )
)
7722, 73, 75, 76syl3anc 1326 . . . . 5  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
( ( ZRHom `  R ) `  (
(pmSgn `  N ) `  { <. 1 ,  1
>. ,  <. 2 ,  2 >. } ) ) 
.x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  1 >. , 
<. 2 ,  2
>. } `  n ) M n ) ) ) )  e.  (
Base `  R )
)
78 fveq2 6191 . . . . . . . 8  |-  ( k  =  { <. 1 ,  1 >. ,  <. 2 ,  2 >. }  ->  ( (pmSgn `  N ) `  k
)  =  ( (pmSgn `  N ) `  { <. 1 ,  1 >. ,  <. 2 ,  2
>. } ) )
7978fveq2d 6195 . . . . . . 7  |-  ( k  =  { <. 1 ,  1 >. ,  <. 2 ,  2 >. }  ->  ( ( ZRHom `  R ) `  (
(pmSgn `  N ) `  k ) )  =  ( ( ZRHom `  R ) `  (
(pmSgn `  N ) `  { <. 1 ,  1
>. ,  <. 2 ,  2 >. } ) ) )
80 fveq1 6190 . . . . . . . . . 10  |-  ( k  =  { <. 1 ,  1 >. ,  <. 2 ,  2 >. }  ->  ( k `  n )  =  ( { <. 1 ,  1
>. ,  <. 2 ,  2 >. } `  n
) )
8180oveq1d 6665 . . . . . . . . 9  |-  ( k  =  { <. 1 ,  1 >. ,  <. 2 ,  2 >. }  ->  ( ( k `
 n ) M n )  =  ( ( { <. 1 ,  1 >. ,  <. 2 ,  2 >. } `
 n ) M n ) )
8281mpteq2dv 4745 . . . . . . . 8  |-  ( k  =  { <. 1 ,  1 >. ,  <. 2 ,  2 >. }  ->  ( n  e.  N  |->  ( ( k `
 n ) M n ) )  =  ( n  e.  N  |->  ( ( { <. 1 ,  1 >. , 
<. 2 ,  2
>. } `  n ) M n ) ) )
8382oveq2d 6666 . . . . . . 7  |-  ( k  =  { <. 1 ,  1 >. ,  <. 2 ,  2 >. }  ->  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( k `  n ) M n ) ) )  =  ( (mulGrp `  R
)  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  1 >. , 
<. 2 ,  2
>. } `  n ) M n ) ) ) )
8479, 83oveq12d 6668 . . . . . 6  |-  ( k  =  { <. 1 ,  1 >. ,  <. 2 ,  2 >. }  ->  ( ( ( ZRHom `  R ) `  ( (pmSgn `  N
) `  k )
)  .x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( k `  n ) M n ) ) ) )  =  ( ( ( ZRHom `  R ) `  ( (pmSgn `  N
) `  { <. 1 ,  1 >. ,  <. 2 ,  2 >. } ) )  .x.  (
(mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  1 >. ,  <. 2 ,  2 >. } `
 n ) M n ) ) ) ) )
8511, 84gsumsn 18354 . . . . 5  |-  ( ( R  e.  Mnd  /\  {
<. 1 ,  1
>. ,  <. 2 ,  2 >. }  e.  _V  /\  ( ( ( ZRHom `  R ) `  (
(pmSgn `  N ) `  { <. 1 ,  1
>. ,  <. 2 ,  2 >. } ) ) 
.x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  1 >. , 
<. 2 ,  2
>. } `  n ) M n ) ) ) )  e.  (
Base `  R )
)  ->  ( R  gsumg  ( k  e.  { { <. 1 ,  1 >. ,  <. 2 ,  2
>. } }  |->  ( ( ( ZRHom `  R
) `  ( (pmSgn `  N ) `  k
) )  .x.  (
(mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( k `  n
) M n ) ) ) ) ) )  =  ( ( ( ZRHom `  R
) `  ( (pmSgn `  N ) `  { <. 1 ,  1 >. ,  <. 2 ,  2
>. } ) )  .x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  1 >. ,  <. 2 ,  2 >. } `
 n ) M n ) ) ) ) )
8665, 67, 77, 85syl3anc 1326 . . . 4  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  ( R  gsumg  ( k  e.  { { <. 1 ,  1
>. ,  <. 2 ,  2 >. } }  |->  ( ( ( ZRHom `  R ) `  (
(pmSgn `  N ) `  k ) )  .x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( k `  n
) M n ) ) ) ) ) )  =  ( ( ( ZRHom `  R
) `  ( (pmSgn `  N ) `  { <. 1 ,  1 >. ,  <. 2 ,  2
>. } ) )  .x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  1 >. ,  <. 2 ,  2 >. } `
 n ) M n ) ) ) ) )
87 prex 4909 . . . . . 6  |-  { <. 1 ,  2 >. , 
<. 2 ,  1
>. }  e.  _V
8887a1i 11 . . . . 5  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  { <. 1 ,  2 >. , 
<. 2 ,  1
>. }  e.  _V )
8987prid2 4298 . . . . . . . . 9  |-  { <. 1 ,  2 >. , 
<. 2 ,  1
>. }  e.  { { <. 1 ,  1 >. ,  <. 2 ,  2
>. } ,  { <. 1 ,  2 >. , 
<. 2 ,  1
>. } }
9089, 59eleqtrri 2700 . . . . . . . 8  |-  { <. 1 ,  2 >. , 
<. 2 ,  1
>. }  e.  ( Base `  ( SymGrp `  N )
)
9190a1i 11 . . . . . . 7  |-  ( M  e.  B  ->  { <. 1 ,  2 >. , 
<. 2 ,  1
>. }  e.  ( Base `  ( SymGrp `  N )
) )
924, 6, 5zrhpsgnelbas 19940 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  N  e.  Fin  /\  { <. 1 ,  2 >. , 
<. 2 ,  1
>. }  e.  ( Base `  ( SymGrp `  N )
) )  ->  (
( ZRHom `  R
) `  ( (pmSgn `  N ) `  { <. 1 ,  2 >. ,  <. 2 ,  1
>. } ) )  e.  ( Base `  R
) )
9317, 92mp3an2 1412 . . . . . . 7  |-  ( ( R  e.  Ring  /\  { <. 1 ,  2 >. ,  <. 2 ,  1
>. }  e.  ( Base `  ( SymGrp `  N )
) )  ->  (
( ZRHom `  R
) `  ( (pmSgn `  N ) `  { <. 1 ,  2 >. ,  <. 2 ,  1
>. } ) )  e.  ( Base `  R
) )
9491, 93sylan2 491 . . . . . 6  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
( ZRHom `  R
) `  ( (pmSgn `  N ) `  { <. 1 ,  2 >. ,  <. 2 ,  1
>. } ) )  e.  ( Base `  R
) )
9515, 4, 2, 3, 8m2detleiblem2 20434 . . . . . . 7  |-  ( ( R  e.  Ring  /\  { <. 1 ,  2 >. ,  <. 2 ,  1
>. }  e.  ( Base `  ( SymGrp `  N )
)  /\  M  e.  B )  ->  (
(mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  2 >. ,  <. 2 ,  1 >. } `
 n ) M n ) ) )  e.  ( Base `  R
) )
9690, 95mp3an2 1412 . . . . . 6  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
(mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  2 >. ,  <. 2 ,  1 >. } `
 n ) M n ) ) )  e.  ( Base `  R
) )
9711, 7ringcl 18561 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
( ZRHom `  R
) `  ( (pmSgn `  N ) `  { <. 1 ,  2 >. ,  <. 2 ,  1
>. } ) )  e.  ( Base `  R
)  /\  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  2 >. , 
<. 2 ,  1
>. } `  n ) M n ) ) )  e.  ( Base `  R ) )  -> 
( ( ( ZRHom `  R ) `  (
(pmSgn `  N ) `  { <. 1 ,  2
>. ,  <. 2 ,  1 >. } ) ) 
.x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  2 >. , 
<. 2 ,  1
>. } `  n ) M n ) ) ) )  e.  (
Base `  R )
)
9822, 94, 96, 97syl3anc 1326 . . . . 5  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
( ( ZRHom `  R ) `  (
(pmSgn `  N ) `  { <. 1 ,  2
>. ,  <. 2 ,  1 >. } ) ) 
.x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  2 >. , 
<. 2 ,  1
>. } `  n ) M n ) ) ) )  e.  (
Base `  R )
)
99 fveq2 6191 . . . . . . . 8  |-  ( k  =  { <. 1 ,  2 >. ,  <. 2 ,  1 >. }  ->  ( (pmSgn `  N ) `  k
)  =  ( (pmSgn `  N ) `  { <. 1 ,  2 >. ,  <. 2 ,  1
>. } ) )
10099fveq2d 6195 . . . . . . 7  |-  ( k  =  { <. 1 ,  2 >. ,  <. 2 ,  1 >. }  ->  ( ( ZRHom `  R ) `  (
(pmSgn `  N ) `  k ) )  =  ( ( ZRHom `  R ) `  (
(pmSgn `  N ) `  { <. 1 ,  2
>. ,  <. 2 ,  1 >. } ) ) )
101 fveq1 6190 . . . . . . . . . 10  |-  ( k  =  { <. 1 ,  2 >. ,  <. 2 ,  1 >. }  ->  ( k `  n )  =  ( { <. 1 ,  2
>. ,  <. 2 ,  1 >. } `  n
) )
102101oveq1d 6665 . . . . . . . . 9  |-  ( k  =  { <. 1 ,  2 >. ,  <. 2 ,  1 >. }  ->  ( ( k `
 n ) M n )  =  ( ( { <. 1 ,  2 >. ,  <. 2 ,  1 >. } `
 n ) M n ) )
103102mpteq2dv 4745 . . . . . . . 8  |-  ( k  =  { <. 1 ,  2 >. ,  <. 2 ,  1 >. }  ->  ( n  e.  N  |->  ( ( k `
 n ) M n ) )  =  ( n  e.  N  |->  ( ( { <. 1 ,  2 >. , 
<. 2 ,  1
>. } `  n ) M n ) ) )
104103oveq2d 6666 . . . . . . 7  |-  ( k  =  { <. 1 ,  2 >. ,  <. 2 ,  1 >. }  ->  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( k `  n ) M n ) ) )  =  ( (mulGrp `  R
)  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  2 >. , 
<. 2 ,  1
>. } `  n ) M n ) ) ) )
105100, 104oveq12d 6668 . . . . . 6  |-  ( k  =  { <. 1 ,  2 >. ,  <. 2 ,  1 >. }  ->  ( ( ( ZRHom `  R ) `  ( (pmSgn `  N
) `  k )
)  .x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( k `  n ) M n ) ) ) )  =  ( ( ( ZRHom `  R ) `  ( (pmSgn `  N
) `  { <. 1 ,  2 >. ,  <. 2 ,  1 >. } ) )  .x.  (
(mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  2 >. ,  <. 2 ,  1 >. } `
 n ) M n ) ) ) ) )
10611, 105gsumsn 18354 . . . . 5  |-  ( ( R  e.  Mnd  /\  {
<. 1 ,  2
>. ,  <. 2 ,  1 >. }  e.  _V  /\  ( ( ( ZRHom `  R ) `  (
(pmSgn `  N ) `  { <. 1 ,  2
>. ,  <. 2 ,  1 >. } ) ) 
.x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  2 >. , 
<. 2 ,  1
>. } `  n ) M n ) ) ) )  e.  (
Base `  R )
)  ->  ( R  gsumg  ( k  e.  { { <. 1 ,  2 >. ,  <. 2 ,  1
>. } }  |->  ( ( ( ZRHom `  R
) `  ( (pmSgn `  N ) `  k
) )  .x.  (
(mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( k `  n
) M n ) ) ) ) ) )  =  ( ( ( ZRHom `  R
) `  ( (pmSgn `  N ) `  { <. 1 ,  2 >. ,  <. 2 ,  1
>. } ) )  .x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  2 >. ,  <. 2 ,  1 >. } `
 n ) M n ) ) ) ) )
10765, 88, 98, 106syl3anc 1326 . . . 4  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  ( R  gsumg  ( k  e.  { { <. 1 ,  2
>. ,  <. 2 ,  1 >. } }  |->  ( ( ( ZRHom `  R ) `  (
(pmSgn `  N ) `  k ) )  .x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( k `  n
) M n ) ) ) ) ) )  =  ( ( ( ZRHom `  R
) `  ( (pmSgn `  N ) `  { <. 1 ,  2 >. ,  <. 2 ,  1
>. } ) )  .x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  2 >. ,  <. 2 ,  1 >. } `
 n ) M n ) ) ) ) )
10886, 107oveq12d 6668 . . 3  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
( R  gsumg  ( k  e.  { { <. 1 ,  1
>. ,  <. 2 ,  2 >. } }  |->  ( ( ( ZRHom `  R ) `  (
(pmSgn `  N ) `  k ) )  .x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( k `  n
) M n ) ) ) ) ) ) ( +g  `  R
) ( R  gsumg  ( k  e.  { { <. 1 ,  2 >. , 
<. 2 ,  1
>. } }  |->  ( ( ( ZRHom `  R
) `  ( (pmSgn `  N ) `  k
) )  .x.  (
(mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( k `  n
) M n ) ) ) ) ) ) )  =  ( ( ( ( ZRHom `  R ) `  (
(pmSgn `  N ) `  { <. 1 ,  1
>. ,  <. 2 ,  2 >. } ) ) 
.x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  1 >. , 
<. 2 ,  2
>. } `  n ) M n ) ) ) ) ( +g  `  R ) ( ( ( ZRHom `  R
) `  ( (pmSgn `  N ) `  { <. 1 ,  2 >. ,  <. 2 ,  1
>. } ) )  .x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  2 >. ,  <. 2 ,  1 >. } `
 n ) M n ) ) ) ) ) )
109 eqidd 2623 . . . . . . 7  |-  ( M  e.  B  ->  { <. 1 ,  1 >. , 
<. 2 ,  2
>. }  =  { <. 1 ,  1 >. , 
<. 2 ,  2
>. } )
110 eqid 2622 . . . . . . . 8  |-  ( 1r
`  R )  =  ( 1r `  R
)
11115, 4, 5, 6, 110m2detleiblem5 20431 . . . . . . 7  |-  ( ( R  e.  Ring  /\  { <. 1 ,  1 >. ,  <. 2 ,  2
>. }  =  { <. 1 ,  1 >. , 
<. 2 ,  2
>. } )  ->  (
( ZRHom `  R
) `  ( (pmSgn `  N ) `  { <. 1 ,  1 >. ,  <. 2 ,  2
>. } ) )  =  ( 1r `  R
) )
112109, 111sylan2 491 . . . . . 6  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
( ZRHom `  R
) `  ( (pmSgn `  N ) `  { <. 1 ,  1 >. ,  <. 2 ,  2
>. } ) )  =  ( 1r `  R
) )
113 eqidd 2623 . . . . . . 7  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  { <. 1 ,  1 >. , 
<. 2 ,  2
>. }  =  { <. 1 ,  1 >. , 
<. 2 ,  2
>. } )
1148, 7mgpplusg 18493 . . . . . . . 8  |-  .x.  =  ( +g  `  (mulGrp `  R ) )
11515, 4, 2, 3, 8, 114m2detleiblem3 20435 . . . . . . 7  |-  ( ( R  e.  Ring  /\  { <. 1 ,  1 >. ,  <. 2 ,  2
>. }  =  { <. 1 ,  1 >. , 
<. 2 ,  2
>. }  /\  M  e.  B )  ->  (
(mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  1 >. ,  <. 2 ,  2 >. } `
 n ) M n ) ) )  =  ( ( 1 M 1 )  .x.  ( 2 M 2 ) ) )
11622, 113, 28, 115syl3anc 1326 . . . . . 6  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
(mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  1 >. ,  <. 2 ,  2 >. } `
 n ) M n ) ) )  =  ( ( 1 M 1 )  .x.  ( 2 M 2 ) ) )
117112, 116oveq12d 6668 . . . . 5  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
( ( ZRHom `  R ) `  (
(pmSgn `  N ) `  { <. 1 ,  1
>. ,  <. 2 ,  2 >. } ) ) 
.x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  1 >. , 
<. 2 ,  2
>. } `  n ) M n ) ) ) )  =  ( ( 1r `  R
)  .x.  ( (
1 M 1 ) 
.x.  ( 2 M 2 ) ) ) )
11843prid1 4297 . . . . . . . . . 10  |-  1  e.  { 1 ,  2 }
119118, 15eleqtrri 2700 . . . . . . . . 9  |-  1  e.  N
120119a1i 11 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  1  e.  N )
1213eleq2i 2693 . . . . . . . . . 10  |-  ( M  e.  B  <->  M  e.  ( Base `  A )
)
122121biimpi 206 . . . . . . . . 9  |-  ( M  e.  B  ->  M  e.  ( Base `  A
) )
123122adantl 482 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  M  e.  ( Base `  A
) )
1242, 11matecl 20231 . . . . . . . 8  |-  ( ( 1  e.  N  /\  1  e.  N  /\  M  e.  ( Base `  A ) )  -> 
( 1 M 1 )  e.  ( Base `  R ) )
125120, 120, 123, 124syl3anc 1326 . . . . . . 7  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
1 M 1 )  e.  ( Base `  R
) )
126 prid2g 4296 . . . . . . . . . . 11  |-  ( 2  e.  NN  ->  2  e.  { 1 ,  2 } )
12757, 126ax-mp 5 . . . . . . . . . 10  |-  2  e.  { 1 ,  2 }
128127, 15eleqtrri 2700 . . . . . . . . 9  |-  2  e.  N
129128a1i 11 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  2  e.  N )
1302, 11matecl 20231 . . . . . . . 8  |-  ( ( 2  e.  N  /\  2  e.  N  /\  M  e.  ( Base `  A ) )  -> 
( 2 M 2 )  e.  ( Base `  R ) )
131129, 129, 123, 130syl3anc 1326 . . . . . . 7  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
2 M 2 )  e.  ( Base `  R
) )
13211, 7ringcl 18561 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
1 M 1 )  e.  ( Base `  R
)  /\  ( 2 M 2 )  e.  ( Base `  R
) )  ->  (
( 1 M 1 )  .x.  ( 2 M 2 ) )  e.  ( Base `  R
) )
13322, 125, 131, 132syl3anc 1326 . . . . . 6  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
( 1 M 1 )  .x.  ( 2 M 2 ) )  e.  ( Base `  R
) )
13411, 7, 110ringlidm 18571 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
( 1 M 1 )  .x.  ( 2 M 2 ) )  e.  ( Base `  R
) )  ->  (
( 1r `  R
)  .x.  ( (
1 M 1 ) 
.x.  ( 2 M 2 ) ) )  =  ( ( 1 M 1 )  .x.  ( 2 M 2 ) ) )
135133, 134syldan 487 . . . . 5  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
( 1r `  R
)  .x.  ( (
1 M 1 ) 
.x.  ( 2 M 2 ) ) )  =  ( ( 1 M 1 )  .x.  ( 2 M 2 ) ) )
136117, 135eqtrd 2656 . . . 4  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
( ( ZRHom `  R ) `  (
(pmSgn `  N ) `  { <. 1 ,  1
>. ,  <. 2 ,  2 >. } ) ) 
.x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  1 >. , 
<. 2 ,  2
>. } `  n ) M n ) ) ) )  =  ( ( 1 M 1 )  .x.  ( 2 M 2 ) ) )
137 eqidd 2623 . . . . . 6  |-  ( M  e.  B  ->  { <. 1 ,  2 >. , 
<. 2 ,  1
>. }  =  { <. 1 ,  2 >. , 
<. 2 ,  1
>. } )
138 eqid 2622 . . . . . . 7  |-  ( invg `  R )  =  ( invg `  R )
13915, 4, 5, 6, 110, 138m2detleiblem6 20432 . . . . . 6  |-  ( ( R  e.  Ring  /\  { <. 1 ,  2 >. ,  <. 2 ,  1
>. }  =  { <. 1 ,  2 >. , 
<. 2 ,  1
>. } )  ->  (
( ZRHom `  R
) `  ( (pmSgn `  N ) `  { <. 1 ,  2 >. ,  <. 2 ,  1
>. } ) )  =  ( ( invg `  R ) `  ( 1r `  R ) ) )
140137, 139sylan2 491 . . . . 5  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
( ZRHom `  R
) `  ( (pmSgn `  N ) `  { <. 1 ,  2 >. ,  <. 2 ,  1
>. } ) )  =  ( ( invg `  R ) `  ( 1r `  R ) ) )
141 eqidd 2623 . . . . . 6  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  { <. 1 ,  2 >. , 
<. 2 ,  1
>. }  =  { <. 1 ,  2 >. , 
<. 2 ,  1
>. } )
14215, 4, 2, 3, 8, 114m2detleiblem4 20436 . . . . . 6  |-  ( ( R  e.  Ring  /\  { <. 1 ,  2 >. ,  <. 2 ,  1
>. }  =  { <. 1 ,  2 >. , 
<. 2 ,  1
>. }  /\  M  e.  B )  ->  (
(mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  2 >. ,  <. 2 ,  1 >. } `
 n ) M n ) ) )  =  ( ( 2 M 1 )  .x.  ( 1 M 2 ) ) )
14322, 141, 28, 142syl3anc 1326 . . . . 5  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
(mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  2 >. ,  <. 2 ,  1 >. } `
 n ) M n ) ) )  =  ( ( 2 M 1 )  .x.  ( 1 M 2 ) ) )
144140, 143oveq12d 6668 . . . 4  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
( ( ZRHom `  R ) `  (
(pmSgn `  N ) `  { <. 1 ,  2
>. ,  <. 2 ,  1 >. } ) ) 
.x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  2 >. , 
<. 2 ,  1
>. } `  n ) M n ) ) ) )  =  ( ( ( invg `  R ) `  ( 1r `  R ) ) 
.x.  ( ( 2 M 1 )  .x.  ( 1 M 2 ) ) ) )
145136, 144oveq12d 6668 . . 3  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
( ( ( ZRHom `  R ) `  (
(pmSgn `  N ) `  { <. 1 ,  1
>. ,  <. 2 ,  2 >. } ) ) 
.x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  1 >. , 
<. 2 ,  2
>. } `  n ) M n ) ) ) ) ( +g  `  R ) ( ( ( ZRHom `  R
) `  ( (pmSgn `  N ) `  { <. 1 ,  2 >. ,  <. 2 ,  1
>. } ) )  .x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( { <. 1 ,  2 >. ,  <. 2 ,  1 >. } `
 n ) M n ) ) ) ) )  =  ( ( ( 1 M 1 )  .x.  (
2 M 2 ) ) ( +g  `  R
) ( ( ( invg `  R
) `  ( 1r `  R ) )  .x.  ( ( 2 M 1 )  .x.  (
1 M 2 ) ) ) ) )
1462, 11matecl 20231 . . . . . 6  |-  ( ( 2  e.  N  /\  1  e.  N  /\  M  e.  ( Base `  A ) )  -> 
( 2 M 1 )  e.  ( Base `  R ) )
147129, 120, 123, 146syl3anc 1326 . . . . 5  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
2 M 1 )  e.  ( Base `  R
) )
1482, 11matecl 20231 . . . . . 6  |-  ( ( 1  e.  N  /\  2  e.  N  /\  M  e.  ( Base `  A ) )  -> 
( 1 M 2 )  e.  ( Base `  R ) )
149120, 129, 123, 148syl3anc 1326 . . . . 5  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
1 M 2 )  e.  ( Base `  R
) )
15011, 7ringcl 18561 . . . . 5  |-  ( ( R  e.  Ring  /\  (
2 M 1 )  e.  ( Base `  R
)  /\  ( 1 M 2 )  e.  ( Base `  R
) )  ->  (
( 2 M 1 )  .x.  ( 1 M 2 ) )  e.  ( Base `  R
) )
15122, 147, 149, 150syl3anc 1326 . . . 4  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
( 2 M 1 )  .x.  ( 1 M 2 ) )  e.  ( Base `  R
) )
152 m2detleib.m . . . . 5  |-  .-  =  ( -g `  R )
15315, 4, 5, 6, 110, 138, 7, 152m2detleiblem7 20433 . . . 4  |-  ( ( R  e.  Ring  /\  (
( 1 M 1 )  .x.  ( 2 M 2 ) )  e.  ( Base `  R
)  /\  ( (
2 M 1 ) 
.x.  ( 1 M 2 ) )  e.  ( Base `  R
) )  ->  (
( ( 1 M 1 )  .x.  (
2 M 2 ) ) ( +g  `  R
) ( ( ( invg `  R
) `  ( 1r `  R ) )  .x.  ( ( 2 M 1 )  .x.  (
1 M 2 ) ) ) )  =  ( ( ( 1 M 1 )  .x.  ( 2 M 2 ) )  .-  (
( 2 M 1 )  .x.  ( 1 M 2 ) ) ) )
15422, 133, 151, 153syl3anc 1326 . . 3  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
( ( 1 M 1 )  .x.  (
2 M 2 ) ) ( +g  `  R
) ( ( ( invg `  R
) `  ( 1r `  R ) )  .x.  ( ( 2 M 1 )  .x.  (
1 M 2 ) ) ) )  =  ( ( ( 1 M 1 )  .x.  ( 2 M 2 ) )  .-  (
( 2 M 1 )  .x.  ( 1 M 2 ) ) ) )
155108, 145, 1543eqtrd 2660 . 2  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
( R  gsumg  ( k  e.  { { <. 1 ,  1
>. ,  <. 2 ,  2 >. } }  |->  ( ( ( ZRHom `  R ) `  (
(pmSgn `  N ) `  k ) )  .x.  ( (mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( k `  n
) M n ) ) ) ) ) ) ( +g  `  R
) ( R  gsumg  ( k  e.  { { <. 1 ,  2 >. , 
<. 2 ,  1
>. } }  |->  ( ( ( ZRHom `  R
) `  ( (pmSgn `  N ) `  k
) )  .x.  (
(mulGrp `  R )  gsumg  ( n  e.  N  |->  ( ( k `  n
) M n ) ) ) ) ) ) )  =  ( ( ( 1 M 1 )  .x.  (
2 M 2 ) )  .-  ( ( 2 M 1 ) 
.x.  ( 1 M 2 ) ) ) )
15610, 63, 1553eqtrd 2660 1  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  ( D `  M )  =  ( ( ( 1 M 1 ) 
.x.  ( 2 M 2 ) )  .-  ( ( 2 M 1 )  .x.  (
1 M 2 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   {cpr 4179   <.cop 4183    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   Fincfn 7955   1c1 9937   NNcn 11020   2c2 11070   Basecbs 15857   +g cplusg 15941   .rcmulr 15942    gsumg cgsu 16101   Mndcmnd 17294   invgcminusg 17423   -gcsg 17424   SymGrpcsymg 17797  pmSgncpsgn 17909  CMndccmn 18193  mulGrpcmgp 18489   1rcur 18501   Ringcrg 18547   ZRHomczrh 19848   Mat cmat 20213   maDet cmdat 20390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-reverse 13305  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-gim 17701  df-cntz 17750  df-oppg 17776  df-symg 17798  df-pmtr 17862  df-psgn 17911  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-rnghom 18715  df-subrg 18778  df-sra 19172  df-rgmod 19173  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-dsmm 20076  df-frlm 20091  df-mat 20214  df-mdet 20391
This theorem is referenced by:  lmat22det  29888
  Copyright terms: Public domain W3C validator