| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qusaddvallem | Structured version Visualization version Unicode version | ||
| Description: Value of an operation defined on a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| qusaddf.u |
|
| qusaddf.v |
|
| qusaddf.r |
|
| qusaddf.z |
|
| qusaddf.e |
|
| qusaddf.c |
|
| qusaddflem.f |
|
| qusaddflem.g |
|
| Ref | Expression |
|---|---|
| qusaddvallem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusaddf.u |
. . . 4
| |
| 2 | qusaddf.v |
. . . 4
| |
| 3 | qusaddflem.f |
. . . 4
| |
| 4 | qusaddf.r |
. . . . 5
| |
| 5 | fvex 6201 |
. . . . . 6
| |
| 6 | 2, 5 | syl6eqel 2709 |
. . . . 5
|
| 7 | erex 7766 |
. . . . 5
| |
| 8 | 4, 6, 7 | sylc 65 |
. . . 4
|
| 9 | qusaddf.z |
. . . 4
| |
| 10 | 1, 2, 3, 8, 9 | quslem 16203 |
. . 3
|
| 11 | qusaddf.c |
. . . 4
| |
| 12 | qusaddf.e |
. . . 4
| |
| 13 | 4, 6, 3, 11, 12 | ercpbl 16209 |
. . 3
|
| 14 | qusaddflem.g |
. . 3
| |
| 15 | 10, 13, 14 | imasaddvallem 16189 |
. 2
|
| 16 | 4 | 3ad2ant1 1082 |
. . . 4
|
| 17 | 6 | 3ad2ant1 1082 |
. . . 4
|
| 18 | 16, 17, 3 | divsfval 16207 |
. . 3
|
| 19 | 16, 17, 3 | divsfval 16207 |
. . 3
|
| 20 | 18, 19 | oveq12d 6668 |
. 2
|
| 21 | 16, 17, 3 | divsfval 16207 |
. 2
|
| 22 | 15, 20, 21 | 3eqtr3d 2664 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 df-ov 6653 df-er 7742 df-ec 7744 df-qs 7748 |
| This theorem is referenced by: qusaddval 16213 qusmulval 16215 |
| Copyright terms: Public domain | W3C validator |