MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsfval Structured version   Visualization version   Unicode version

Theorem divsfval 16207
Description: Value of the function in qusval 16202. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ercpbl.r  |-  ( ph  ->  .~  Er  V )
ercpbl.v  |-  ( ph  ->  V  e.  _V )
ercpbl.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
Assertion
Ref Expression
divsfval  |-  ( ph  ->  ( F `  A
)  =  [ A ]  .~  )
Distinct variable groups:    x,  .~    x, A    x, V    ph, x
Allowed substitution hint:    F( x)

Proof of Theorem divsfval
StepHypRef Expression
1 ercpbl.v . . . . 5  |-  ( ph  ->  V  e.  _V )
2 ercpbl.r . . . . . 6  |-  ( ph  ->  .~  Er  V )
32ecss 7788 . . . . 5  |-  ( ph  ->  [ A ]  .~  C_  V )
41, 3ssexd 4805 . . . 4  |-  ( ph  ->  [ A ]  .~  e.  _V )
5 eceq1 7782 . . . . 5  |-  ( x  =  A  ->  [ x ]  .~  =  [ A ]  .~  )
6 ercpbl.f . . . . 5  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
75, 6fvmptg 6280 . . . 4  |-  ( ( A  e.  V  /\  [ A ]  .~  e.  _V )  ->  ( F `
 A )  =  [ A ]  .~  )
84, 7sylan2 491 . . 3  |-  ( ( A  e.  V  /\  ph )  ->  ( F `  A )  =  [ A ]  .~  )
98expcom 451 . 2  |-  ( ph  ->  ( A  e.  V  ->  ( F `  A
)  =  [ A ]  .~  ) )
106dmeqi 5325 . . . . . . . 8  |-  dom  F  =  dom  ( x  e.  V  |->  [ x ]  .~  )
112ecss 7788 . . . . . . . . . . 11  |-  ( ph  ->  [ x ]  .~  C_  V )
121, 11ssexd 4805 . . . . . . . . . 10  |-  ( ph  ->  [ x ]  .~  e.  _V )
1312ralrimivw 2967 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  V  [ x ]  .~  e.  _V )
14 dmmptg 5632 . . . . . . . . 9  |-  ( A. x  e.  V  [
x ]  .~  e.  _V  ->  dom  ( x  e.  V  |->  [ x ]  .~  )  =  V )
1513, 14syl 17 . . . . . . . 8  |-  ( ph  ->  dom  ( x  e.  V  |->  [ x ]  .~  )  =  V
)
1610, 15syl5eq 2668 . . . . . . 7  |-  ( ph  ->  dom  F  =  V )
1716eleq2d 2687 . . . . . 6  |-  ( ph  ->  ( A  e.  dom  F  <-> 
A  e.  V ) )
1817notbid 308 . . . . 5  |-  ( ph  ->  ( -.  A  e. 
dom  F  <->  -.  A  e.  V ) )
19 ndmfv 6218 . . . . 5  |-  ( -.  A  e.  dom  F  ->  ( F `  A
)  =  (/) )
2018, 19syl6bir 244 . . . 4  |-  ( ph  ->  ( -.  A  e.  V  ->  ( F `  A )  =  (/) ) )
21 ecdmn0 7789 . . . . . 6  |-  ( A  e.  dom  .~  <->  [ A ]  .~  =/=  (/) )
22 erdm 7752 . . . . . . . . 9  |-  (  .~  Er  V  ->  dom  .~  =  V )
232, 22syl 17 . . . . . . . 8  |-  ( ph  ->  dom  .~  =  V )
2423eleq2d 2687 . . . . . . 7  |-  ( ph  ->  ( A  e.  dom  .~  <->  A  e.  V ) )
2524biimpd 219 . . . . . 6  |-  ( ph  ->  ( A  e.  dom  .~ 
->  A  e.  V
) )
2621, 25syl5bir 233 . . . . 5  |-  ( ph  ->  ( [ A ]  .~  =/=  (/)  ->  A  e.  V ) )
2726necon1bd 2812 . . . 4  |-  ( ph  ->  ( -.  A  e.  V  ->  [ A ]  .~  =  (/) ) )
2820, 27jcad 555 . . 3  |-  ( ph  ->  ( -.  A  e.  V  ->  ( ( F `  A )  =  (/)  /\  [ A ]  .~  =  (/) ) ) )
29 eqtr3 2643 . . 3  |-  ( ( ( F `  A
)  =  (/)  /\  [ A ]  .~  =  (/) )  ->  ( F `  A )  =  [ A ]  .~  )
3028, 29syl6 35 . 2  |-  ( ph  ->  ( -.  A  e.  V  ->  ( F `  A )  =  [ A ]  .~  )
)
319, 30pm2.61d 170 1  |-  ( ph  ->  ( F `  A
)  =  [ A ]  .~  )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200   (/)c0 3915    |-> cmpt 4729   dom cdm 5114   ` cfv 5888    Er wer 7739   [cec 7740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-er 7742  df-ec 7744
This theorem is referenced by:  ercpbllem  16208  qusaddvallem  16211  qusgrp2  17533  frgpmhm  18178  frgpup3lem  18190  qusring2  18620  qusrhm  19237
  Copyright terms: Public domain W3C validator