Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabsubmgmd Structured version   Visualization version   Unicode version

Theorem rabsubmgmd 41791
Description: Deduction for proving that a restricted class abstraction is a submagma. (Contributed by AV, 26-Feb-2020.)
Hypotheses
Ref Expression
rabsubmgmd.b  |-  B  =  ( Base `  M
)
rabsubmgmd.p  |-  .+  =  ( +g  `  M )
rabsubmgmd.m  |-  ( ph  ->  M  e. Mgm )
rabsubmgmd.cp  |-  ( (
ph  /\  ( (
x  e.  B  /\  y  e.  B )  /\  ( th  /\  ta ) ) )  ->  et )
rabsubmgmd.th  |-  ( z  =  x  ->  ( ps 
<->  th ) )
rabsubmgmd.ta  |-  ( z  =  y  ->  ( ps 
<->  ta ) )
rabsubmgmd.et  |-  ( z  =  ( x  .+  y )  ->  ( ps 
<->  et ) )
Assertion
Ref Expression
rabsubmgmd  |-  ( ph  ->  { z  e.  B  |  ps }  e.  (SubMgm `  M ) )
Distinct variable groups:    x, y,
z, B    x, M, y    ph, x, y    ps, x, y    z,  .+    et, z    ta, z    th, z
Allowed substitution hints:    ph( z)    ps( z)    th( x, y)    ta( x, y)    et( x, y)    .+ ( x, y)    M( z)

Proof of Theorem rabsubmgmd
StepHypRef Expression
1 ssrab2 3687 . . 3  |-  { z  e.  B  |  ps }  C_  B
21a1i 11 . 2  |-  ( ph  ->  { z  e.  B  |  ps }  C_  B
)
3 rabsubmgmd.th . . . . . 6  |-  ( z  =  x  ->  ( ps 
<->  th ) )
43elrab 3363 . . . . 5  |-  ( x  e.  { z  e.  B  |  ps }  <->  ( x  e.  B  /\  th ) )
5 rabsubmgmd.ta . . . . . 6  |-  ( z  =  y  ->  ( ps 
<->  ta ) )
65elrab 3363 . . . . 5  |-  ( y  e.  { z  e.  B  |  ps }  <->  ( y  e.  B  /\  ta ) )
74, 6anbi12i 733 . . . 4  |-  ( ( x  e.  { z  e.  B  |  ps }  /\  y  e.  {
z  e.  B  |  ps } )  <->  ( (
x  e.  B  /\  th )  /\  ( y  e.  B  /\  ta ) ) )
8 rabsubmgmd.m . . . . . . 7  |-  ( ph  ->  M  e. Mgm )
98adantr 481 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  B  /\  th )  /\  ( y  e.  B  /\  ta ) ) )  ->  M  e. Mgm )
10 simprll 802 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  B  /\  th )  /\  ( y  e.  B  /\  ta ) ) )  ->  x  e.  B )
11 simprrl 804 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  B  /\  th )  /\  ( y  e.  B  /\  ta ) ) )  -> 
y  e.  B )
12 rabsubmgmd.b . . . . . . 7  |-  B  =  ( Base `  M
)
13 rabsubmgmd.p . . . . . . 7  |-  .+  =  ( +g  `  M )
1412, 13mgmcl 17245 . . . . . 6  |-  ( ( M  e. Mgm  /\  x  e.  B  /\  y  e.  B )  ->  (
x  .+  y )  e.  B )
159, 10, 11, 14syl3anc 1326 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  B  /\  th )  /\  ( y  e.  B  /\  ta ) ) )  -> 
( x  .+  y
)  e.  B )
16 simpl 473 . . . . . . . 8  |-  ( ( x  e.  B  /\  th )  ->  x  e.  B )
17 simpl 473 . . . . . . . 8  |-  ( ( y  e.  B  /\  ta )  ->  y  e.  B )
1816, 17anim12i 590 . . . . . . 7  |-  ( ( ( x  e.  B  /\  th )  /\  (
y  e.  B  /\  ta ) )  ->  (
x  e.  B  /\  y  e.  B )
)
19 simpr 477 . . . . . . . 8  |-  ( ( x  e.  B  /\  th )  ->  th )
20 simpr 477 . . . . . . . 8  |-  ( ( y  e.  B  /\  ta )  ->  ta )
2119, 20anim12i 590 . . . . . . 7  |-  ( ( ( x  e.  B  /\  th )  /\  (
y  e.  B  /\  ta ) )  ->  ( th  /\  ta ) )
2218, 21jca 554 . . . . . 6  |-  ( ( ( x  e.  B  /\  th )  /\  (
y  e.  B  /\  ta ) )  ->  (
( x  e.  B  /\  y  e.  B
)  /\  ( th  /\  ta ) ) )
23 rabsubmgmd.cp . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  B  /\  y  e.  B )  /\  ( th  /\  ta ) ) )  ->  et )
2422, 23sylan2 491 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  B  /\  th )  /\  ( y  e.  B  /\  ta ) ) )  ->  et )
25 rabsubmgmd.et . . . . . 6  |-  ( z  =  ( x  .+  y )  ->  ( ps 
<->  et ) )
2625elrab 3363 . . . . 5  |-  ( ( x  .+  y )  e.  { z  e.  B  |  ps }  <->  ( ( x  .+  y
)  e.  B  /\  et ) )
2715, 24, 26sylanbrc 698 . . . 4  |-  ( (
ph  /\  ( (
x  e.  B  /\  th )  /\  ( y  e.  B  /\  ta ) ) )  -> 
( x  .+  y
)  e.  { z  e.  B  |  ps } )
287, 27sylan2b 492 . . 3  |-  ( (
ph  /\  ( x  e.  { z  e.  B  |  ps }  /\  y  e.  { z  e.  B  |  ps } ) )  ->  ( x  .+  y )  e.  {
z  e.  B  |  ps } )
2928ralrimivva 2971 . 2  |-  ( ph  ->  A. x  e.  {
z  e.  B  |  ps } A. y  e. 
{ z  e.  B  |  ps }  ( x 
.+  y )  e. 
{ z  e.  B  |  ps } )
3012, 13issubmgm 41789 . . 3  |-  ( M  e. Mgm  ->  ( { z  e.  B  |  ps }  e.  (SubMgm `  M
)  <->  ( { z  e.  B  |  ps }  C_  B  /\  A. x  e.  { z  e.  B  |  ps } A. y  e.  {
z  e.  B  |  ps }  ( x  .+  y )  e.  {
z  e.  B  |  ps } ) ) )
318, 30syl 17 . 2  |-  ( ph  ->  ( { z  e.  B  |  ps }  e.  (SubMgm `  M )  <->  ( { z  e.  B  |  ps }  C_  B  /\  A. x  e.  {
z  e.  B  |  ps } A. y  e. 
{ z  e.  B  |  ps }  ( x 
.+  y )  e. 
{ z  e.  B  |  ps } ) ) )
322, 29, 31mpbir2and 957 1  |-  ( ph  ->  { z  e.  B  |  ps }  e.  (SubMgm `  M ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    C_ wss 3574   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  Mgmcmgm 17240  SubMgmcsubmgm 41778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-mgm 17242  df-submgm 41780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator