Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imo72b2 Structured version   Visualization version   Unicode version

Theorem imo72b2 38475
Description: IMO 1972 B2. (14th International Mathemahics Olympiad in Poland, problem B2). (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
imo72b2.1  |-  ( ph  ->  F : RR --> RR )
imo72b2.2  |-  ( ph  ->  G : RR --> RR )
imo72b2.4  |-  ( ph  ->  B  e.  RR )
imo72b2.5  |-  ( ph  ->  A. u  e.  RR  A. v  e.  RR  (
( F `  (
u  +  v ) )  +  ( F `
 ( u  -  v ) ) )  =  ( 2  x.  ( ( F `  u )  x.  ( G `  v )
) ) )
imo72b2.6  |-  ( ph  ->  A. y  e.  RR  ( abs `  ( F `
 y ) )  <_  1 )
imo72b2.7  |-  ( ph  ->  E. x  e.  RR  ( F `  x )  =/=  0 )
Assertion
Ref Expression
imo72b2  |-  ( ph  ->  ( abs `  ( G `  B )
)  <_  1 )
Distinct variable groups:    u, B, v    x, B    y, B    u, F, v    x, F   
y, F    u, G, v    x, G    y, G    ph, u, v    ph, x    ph, y, u

Proof of Theorem imo72b2
Dummy variables  c 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imo72b2.2 . . . . 5  |-  ( ph  ->  G : RR --> RR )
2 imo72b2.4 . . . . 5  |-  ( ph  ->  B  e.  RR )
31, 2ffvelrnd 6360 . . . 4  |-  ( ph  ->  ( G `  B
)  e.  RR )
43recnd 10068 . . 3  |-  ( ph  ->  ( G `  B
)  e.  CC )
54abscld 14175 . 2  |-  ( ph  ->  ( abs `  ( G `  B )
)  e.  RR )
6 1red 10055 . 2  |-  ( ph  ->  1  e.  RR )
7 simpr 477 . . 3  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  1  <  ( abs `  ( G `
 B ) ) )
81adantr 481 . . . . . . 7  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  G : RR
--> RR )
92adantr 481 . . . . . . 7  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  B  e.  RR )
108, 9ffvelrnd 6360 . . . . . 6  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  ( G `  B )  e.  RR )
1110recnd 10068 . . . . 5  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  ( G `  B )  e.  CC )
1211abscld 14175 . . . 4  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  ( abs `  ( G `  B
) )  e.  RR )
136adantr 481 . . . 4  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  1  e.  RR )
14 ax-resscn 9993 . . . . . . . . 9  |-  RR  C_  CC
15 imaco 5640 . . . . . . . . . . . 12  |-  ( ( abs  o.  F )
" RR )  =  ( abs " ( F " RR ) )
1615eqcomi 2631 . . . . . . . . . . 11  |-  ( abs " ( F " RR ) )  =  ( ( abs  o.  F
) " RR )
17 imassrn 5477 . . . . . . . . . . . . 13  |-  ( ( abs  o.  F )
" RR )  C_  ran  ( abs  o.  F
)
1817a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  ( ( abs  o.  F ) " RR )  C_  ran  ( abs  o.  F ) )
19 imo72b2.1 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F : RR --> RR )
2019adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  F : RR
--> RR )
21 absf 14077 . . . . . . . . . . . . . . . 16  |-  abs : CC
--> RR
2221a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  abs : CC --> RR )
2314a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  RR  C_  CC )
2422, 23fssresd 6071 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  ( abs  |`  RR ) : RR --> RR )
2520, 24fco2d 38461 . . . . . . . . . . . . 13  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  ( abs  o.  F ) : RR --> RR )
26 frn 6053 . . . . . . . . . . . . 13  |-  ( ( abs  o.  F ) : RR --> RR  ->  ran  ( abs  o.  F
)  C_  RR )
2725, 26syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  ran  ( abs 
o.  F )  C_  RR )
2818, 27sstrd 3613 . . . . . . . . . . 11  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  ( ( abs  o.  F ) " RR )  C_  RR )
2916, 28syl5eqss 3649 . . . . . . . . . 10  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  ( abs " ( F " RR ) )  C_  RR )
30 0re 10040 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
3130ne0ii 3923 . . . . . . . . . . . . . . 15  |-  RR  =/=  (/)
3231a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  RR  =/=  (/) )
3332, 25wnefimgd 38460 . . . . . . . . . . . . 13  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  ( ( abs  o.  F ) " RR )  =/=  (/) )
3433necomd 2849 . . . . . . . . . . . 12  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  (/)  =/=  (
( abs  o.  F
) " RR ) )
3516a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  ( abs " ( F " RR ) )  =  ( ( abs  o.  F
) " RR ) )
3634, 35neeqtrrd 2868 . . . . . . . . . . 11  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  (/)  =/=  ( abs " ( F " RR ) ) )
3736necomd 2849 . . . . . . . . . 10  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  ( abs " ( F " RR ) )  =/=  (/) )
38 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  1  <  ( abs `  ( G `  B )
) )  /\  c  =  1 )  -> 
c  =  1 )
3938breq2d 4665 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  1  <  ( abs `  ( G `  B )
) )  /\  c  =  1 )  -> 
( t  <_  c  <->  t  <_  1 ) )
4039ralbidv 2986 . . . . . . . . . . 11  |-  ( ( ( ph  /\  1  <  ( abs `  ( G `  B )
) )  /\  c  =  1 )  -> 
( A. t  e.  ( abs " ( F " RR ) ) t  <_  c  <->  A. t  e.  ( abs " ( F " RR ) ) t  <_  1 ) )
41 imo72b2.6 . . . . . . . . . . . . 13  |-  ( ph  ->  A. y  e.  RR  ( abs `  ( F `
 y ) )  <_  1 )
4219, 41extoimad 38464 . . . . . . . . . . . 12  |-  ( ph  ->  A. t  e.  ( abs " ( F
" RR ) ) t  <_  1 )
4342adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  A. t  e.  ( abs " ( F " RR ) ) t  <_  1 )
4413, 40, 43rspcedvd 3317 . . . . . . . . . 10  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  E. c  e.  RR  A. t  e.  ( abs " ( F " RR ) ) t  <_  c )
4529, 37, 44suprcld 10986 . . . . . . . . 9  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  sup (
( abs " ( F " RR ) ) ,  RR ,  <  )  e.  RR )
4614, 45sseldi 3601 . . . . . . . 8  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  sup (
( abs " ( F " RR ) ) ,  RR ,  <  )  e.  CC )
4714, 12sseldi 3601 . . . . . . . 8  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  ( abs `  ( G `  B
) )  e.  CC )
4846, 47mulcomd 10061 . . . . . . 7  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  ( sup ( ( abs " ( F " RR ) ) ,  RR ,  <  )  x.  ( abs `  ( G `  B )
) )  =  ( ( abs `  ( G `  B )
)  x.  sup (
( abs " ( F " RR ) ) ,  RR ,  <  ) ) )
4930a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  0  e.  RR )
50 0lt1 10550 . . . . . . . . . . . . 13  |-  0  <  1
5150a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  0  <  1 )
5249, 13, 12, 51, 7lttrd 10198 . . . . . . . . . . 11  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  0  <  ( abs `  ( G `
 B ) ) )
5352gt0ne0d 10592 . . . . . . . . . 10  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  ( abs `  ( G `  B
) )  =/=  0
)
5445, 12, 53redivcld 10853 . . . . . . . . 9  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  ( sup ( ( abs " ( F " RR ) ) ,  RR ,  <  )  /  ( abs `  ( G `  B )
) )  e.  RR )
5520adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  1  <  ( abs `  ( G `  B )
) )  /\  u  e.  RR )  ->  F : RR --> RR )
568adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  1  <  ( abs `  ( G `  B )
) )  /\  u  e.  RR )  ->  G : RR --> RR )
57 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  1  <  ( abs `  ( G `  B )
) )  /\  u  e.  RR )  ->  u  e.  RR )
589adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  1  <  ( abs `  ( G `  B )
) )  /\  u  e.  RR )  ->  B  e.  RR )
59 simpr 477 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  v  =  B )  ->  v  =  B )
6059oveq2d 6666 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  v  =  B )  ->  (
u  +  v )  =  ( u  +  B ) )
6160fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  v  =  B )  ->  ( F `  ( u  +  v ) )  =  ( F `  ( u  +  B
) ) )
6259oveq2d 6666 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  v  =  B )  ->  (
u  -  v )  =  ( u  -  B ) )
6362fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  v  =  B )  ->  ( F `  ( u  -  v ) )  =  ( F `  ( u  -  B
) ) )
6461, 63oveq12d 6668 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  v  =  B )  ->  (
( F `  (
u  +  v ) )  +  ( F `
 ( u  -  v ) ) )  =  ( ( F `
 ( u  +  B ) )  +  ( F `  (
u  -  B ) ) ) )
6559fveq2d 6195 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  v  =  B )  ->  ( G `  v )  =  ( G `  B ) )
6665oveq2d 6666 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  v  =  B )  ->  (
( F `  u
)  x.  ( G `
 v ) )  =  ( ( F `
 u )  x.  ( G `  B
) ) )
6766oveq2d 6666 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  v  =  B )  ->  (
2  x.  ( ( F `  u )  x.  ( G `  v ) ) )  =  ( 2  x.  ( ( F `  u )  x.  ( G `  B )
) ) )
6864, 67eqeq12d 2637 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  v  =  B )  ->  (
( ( F `  ( u  +  v
) )  +  ( F `  ( u  -  v ) ) )  =  ( 2  x.  ( ( F `
 u )  x.  ( G `  v
) ) )  <->  ( ( F `  ( u  +  B ) )  +  ( F `  (
u  -  B ) ) )  =  ( 2  x.  ( ( F `  u )  x.  ( G `  B ) ) ) ) )
6968ralbidv 2986 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  v  =  B )  ->  ( A. u  e.  RR  ( ( F `  ( u  +  v
) )  +  ( F `  ( u  -  v ) ) )  =  ( 2  x.  ( ( F `
 u )  x.  ( G `  v
) ) )  <->  A. u  e.  RR  ( ( F `
 ( u  +  B ) )  +  ( F `  (
u  -  B ) ) )  =  ( 2  x.  ( ( F `  u )  x.  ( G `  B ) ) ) ) )
70 imo72b2.5 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. u  e.  RR  A. v  e.  RR  (
( F `  (
u  +  v ) )  +  ( F `
 ( u  -  v ) ) )  =  ( 2  x.  ( ( F `  u )  x.  ( G `  v )
) ) )
71 ralcom2 3104 . . . . . . . . . . . . . . . . . 18  |-  ( A. u  e.  RR  A. v  e.  RR  ( ( F `
 ( u  +  v ) )  +  ( F `  (
u  -  v ) ) )  =  ( 2  x.  ( ( F `  u )  x.  ( G `  v ) ) )  ->  A. v  e.  RR  A. u  e.  RR  (
( F `  (
u  +  v ) )  +  ( F `
 ( u  -  v ) ) )  =  ( 2  x.  ( ( F `  u )  x.  ( G `  v )
) ) )
7271a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A. u  e.  RR  A. v  e.  RR  ( ( F `
 ( u  +  v ) )  +  ( F `  (
u  -  v ) ) )  =  ( 2  x.  ( ( F `  u )  x.  ( G `  v ) ) )  ->  A. v  e.  RR  A. u  e.  RR  (
( F `  (
u  +  v ) )  +  ( F `
 ( u  -  v ) ) )  =  ( 2  x.  ( ( F `  u )  x.  ( G `  v )
) ) ) )
7372imp 445 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  A. u  e.  RR  A. v  e.  RR  ( ( F `
 ( u  +  v ) )  +  ( F `  (
u  -  v ) ) )  =  ( 2  x.  ( ( F `  u )  x.  ( G `  v ) ) ) )  ->  A. v  e.  RR  A. u  e.  RR  ( ( F `
 ( u  +  v ) )  +  ( F `  (
u  -  v ) ) )  =  ( 2  x.  ( ( F `  u )  x.  ( G `  v ) ) ) )
7470, 73mpdan 702 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. v  e.  RR  A. u  e.  RR  (
( F `  (
u  +  v ) )  +  ( F `
 ( u  -  v ) ) )  =  ( 2  x.  ( ( F `  u )  x.  ( G `  v )
) ) )
7569, 2, 74rspcdvinvd 38474 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. u  e.  RR  ( ( F `  ( u  +  B
) )  +  ( F `  ( u  -  B ) ) )  =  ( 2  x.  ( ( F `
 u )  x.  ( G `  B
) ) ) )
7675r19.21bi 2932 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  RR )  ->  ( ( F `  ( u  +  B ) )  +  ( F `  ( u  -  B
) ) )  =  ( 2  x.  (
( F `  u
)  x.  ( G `
 B ) ) ) )
7776adantlr 751 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  1  <  ( abs `  ( G `  B )
) )  /\  u  e.  RR )  ->  (
( F `  (
u  +  B ) )  +  ( F `
 ( u  -  B ) ) )  =  ( 2  x.  ( ( F `  u )  x.  ( G `  B )
) ) )
7841ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  1  <  ( abs `  ( G `  B )
) )  /\  u  e.  RR )  ->  A. y  e.  RR  ( abs `  ( F `  y )
)  <_  1 )
7955, 56, 57, 58, 77, 78imo72b2lem0 38465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  1  <  ( abs `  ( G `  B )
) )  /\  u  e.  RR )  ->  (
( abs `  ( F `  u )
)  x.  ( abs `  ( G `  B
) ) )  <_  sup ( ( abs " ( F " RR ) ) ,  RR ,  <  ) )
80 0xr 10086 . . . . . . . . . . . . 13  |-  0  e.  RR*
8180a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  1  <  ( abs `  ( G `  B )
) )  /\  u  e.  RR )  ->  0  e.  RR* )
82 1re 10039 . . . . . . . . . . . . . 14  |-  1  e.  RR
8382rexri 10097 . . . . . . . . . . . . 13  |-  1  e.  RR*
8483a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  1  <  ( abs `  ( G `  B )
) )  /\  u  e.  RR )  ->  1  e.  RR* )
8512adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  1  <  ( abs `  ( G `  B )
) )  /\  u  e.  RR )  ->  ( abs `  ( G `  B ) )  e.  RR )
8685rexrd 10089 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  1  <  ( abs `  ( G `  B )
) )  /\  u  e.  RR )  ->  ( abs `  ( G `  B ) )  e. 
RR* )
8750a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  1  <  ( abs `  ( G `  B )
) )  /\  u  e.  RR )  ->  0  <  1 )
88 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  1  <  ( abs `  ( G `  B )
) )  /\  u  e.  RR )  ->  1  <  ( abs `  ( G `  B )
) )
8981, 84, 86, 87, 88xrlttrd 11990 . . . . . . . . . . 11  |-  ( ( ( ph  /\  1  <  ( abs `  ( G `  B )
) )  /\  u  e.  RR )  ->  0  <  ( abs `  ( G `  B )
) )
9020ffvelrnda 6359 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  1  <  ( abs `  ( G `  B )
) )  /\  u  e.  RR )  ->  ( F `  u )  e.  RR )
9190recnd 10068 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  1  <  ( abs `  ( G `  B )
) )  /\  u  e.  RR )  ->  ( F `  u )  e.  CC )
9291abscld 14175 . . . . . . . . . . 11  |-  ( ( ( ph  /\  1  <  ( abs `  ( G `  B )
) )  /\  u  e.  RR )  ->  ( abs `  ( F `  u ) )  e.  RR )
9345adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  1  <  ( abs `  ( G `  B )
) )  /\  u  e.  RR )  ->  sup ( ( abs " ( F " RR ) ) ,  RR ,  <  )  e.  RR )
9479, 89, 85, 92, 93lemuldiv3d 38472 . . . . . . . . . 10  |-  ( ( ( ph  /\  1  <  ( abs `  ( G `  B )
) )  /\  u  e.  RR )  ->  ( abs `  ( F `  u ) )  <_ 
( sup ( ( abs " ( F
" RR ) ) ,  RR ,  <  )  /  ( abs `  ( G `  B )
) ) )
9594ralrimiva 2966 . . . . . . . . 9  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  A. u  e.  RR  ( abs `  ( F `  u )
)  <_  ( sup ( ( abs " ( F " RR ) ) ,  RR ,  <  )  /  ( abs `  ( G `  B )
) ) )
9620, 54, 95imo72b2lem2 38467 . . . . . . . 8  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  sup (
( abs " ( F " RR ) ) ,  RR ,  <  )  <_  ( sup (
( abs " ( F " RR ) ) ,  RR ,  <  )  /  ( abs `  ( G `  B )
) ) )
9796, 52, 12, 45, 45lemuldiv4d 38473 . . . . . . 7  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  ( sup ( ( abs " ( F " RR ) ) ,  RR ,  <  )  x.  ( abs `  ( G `  B )
) )  <_  sup ( ( abs " ( F " RR ) ) ,  RR ,  <  ) )
9848, 97eqbrtrrd 4677 . . . . . 6  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  ( ( abs `  ( G `  B ) )  x. 
sup ( ( abs " ( F " RR ) ) ,  RR ,  <  ) )  <_  sup ( ( abs " ( F " RR ) ) ,  RR ,  <  ) )
99 imo72b2.7 . . . . . . . 8  |-  ( ph  ->  E. x  e.  RR  ( F `  x )  =/=  0 )
10099adantr 481 . . . . . . 7  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  E. x  e.  RR  ( F `  x )  =/=  0
)
10141adantr 481 . . . . . . 7  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  A. y  e.  RR  ( abs `  ( F `  y )
)  <_  1 )
10220, 100, 101imo72b2lem1 38471 . . . . . 6  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  0  <  sup ( ( abs " ( F " RR ) ) ,  RR ,  <  ) )
10398, 102, 45, 12, 45lemuldiv3d 38472 . . . . 5  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  ( abs `  ( G `  B
) )  <_  ( sup ( ( abs " ( F " RR ) ) ,  RR ,  <  )  /  sup ( ( abs " ( F
" RR ) ) ,  RR ,  <  ) ) )
10423, 45sseldd 3604 . . . . . . 7  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  sup (
( abs " ( F " RR ) ) ,  RR ,  <  )  e.  CC )
105102gt0ne0d 10592 . . . . . . 7  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  sup (
( abs " ( F " RR ) ) ,  RR ,  <  )  =/=  0 )
106104, 105dividd 10799 . . . . . 6  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  ( sup ( ( abs " ( F " RR ) ) ,  RR ,  <  )  /  sup ( ( abs " ( F
" RR ) ) ,  RR ,  <  ) )  =  1 )
107106eqcomd 2628 . . . . 5  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  1  =  ( sup ( ( abs " ( F " RR ) ) ,  RR ,  <  )  /  sup ( ( abs " ( F " RR ) ) ,  RR ,  <  ) ) )
108103, 107breqtrrd 4681 . . . 4  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  ( abs `  ( G `  B
) )  <_  1
)
10912, 13, 108lensymd 10188 . . 3  |-  ( (
ph  /\  1  <  ( abs `  ( G `
 B ) ) )  ->  -.  1  <  ( abs `  ( G `  B )
) )
1107, 109pm2.65da 600 . 2  |-  ( ph  ->  -.  1  <  ( abs `  ( G `  B ) ) )
1115, 6, 110nltled 10187 1  |-  ( ph  ->  ( abs `  ( G `  B )
)  <_  1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   class class class wbr 4653   ran crn 5115   "cima 5117    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   2c2 11070   abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator