| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimdaa | Structured version Visualization version Unicode version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-Sep-2003.) (Proof shortened by Wolf Lammen, 29-Dec-2019.) |
| Ref | Expression |
|---|---|
| ralimdaa.1 |
|
| ralimdaa.2 |
|
| Ref | Expression |
|---|---|
| ralimdaa |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdaa.1 |
. . 3
| |
| 2 | ralimdaa.2 |
. . . 4
| |
| 3 | 2 | ex 450 |
. . 3
|
| 4 | 1, 3 | ralrimi 2957 |
. 2
|
| 5 | ralim 2948 |
. 2
| |
| 6 | 4, 5 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-nf 1710 df-ral 2917 |
| This theorem is referenced by: eltsk2g 9573 ptcnplem 21424 poimirlem26 33435 allbutfifvre 39907 climleltrp 39908 fnlimabslt 39911 stoweidlem61 40278 stoweid 40280 fourierdlem73 40396 smflimlem2 40980 |
| Copyright terms: Public domain | W3C validator |