Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  allbutfifvre Structured version   Visualization version   Unicode version

Theorem allbutfifvre 39907
Description: Given a sequence of real-valued functions, and  X that belongs to all but finitely many domains, then its function value is ultimately a real number. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
allbutfifvre.1  |-  F/ m ph
allbutfifvre.2  |-  Z  =  ( ZZ>= `  M )
allbutfifvre.3  |-  ( (
ph  /\  m  e.  Z )  ->  ( F `  m ) : dom  ( F `  m ) --> RR )
allbutfifvre.4  |-  D  = 
U_ n  e.  Z  |^|_
m  e.  ( ZZ>= `  n ) dom  ( F `  m )
allbutfifvre.5  |-  ( ph  ->  X  e.  D )
Assertion
Ref Expression
allbutfifvre  |-  ( ph  ->  E. n  e.  Z  A. m  e.  ( ZZ>=
`  n ) ( ( F `  m
) `  X )  e.  RR )
Distinct variable groups:    m, X, n    m, Z    ph, n
Allowed substitution hints:    ph( m)    D( m, n)    F( m, n)    M( m, n)    Z( n)

Proof of Theorem allbutfifvre
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 allbutfifvre.5 . . . 4  |-  ( ph  ->  X  e.  D )
2 allbutfifvre.4 . . . 4  |-  D  = 
U_ n  e.  Z  |^|_
m  e.  ( ZZ>= `  n ) dom  ( F `  m )
31, 2syl6eleq 2711 . . 3  |-  ( ph  ->  X  e.  U_ n  e.  Z  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m
) )
4 allbutfifvre.2 . . . 4  |-  Z  =  ( ZZ>= `  M )
5 eqid 2622 . . . 4  |-  U_ n  e.  Z  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m
)  =  U_ n  e.  Z  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m
)
64, 5allbutfi 39616 . . 3  |-  ( X  e.  U_ n  e.  Z  |^|_ m  e.  (
ZZ>= `  n ) dom  ( F `  m
)  <->  E. n  e.  Z  A. m  e.  ( ZZ>=
`  n ) X  e.  dom  ( F `
 m ) )
73, 6sylib 208 . 2  |-  ( ph  ->  E. n  e.  Z  A. m  e.  ( ZZ>=
`  n ) X  e.  dom  ( F `
 m ) )
8 allbutfifvre.1 . . . . 5  |-  F/ m ph
9 nfv 1843 . . . . 5  |-  F/ m  n  e.  Z
108, 9nfan 1828 . . . 4  |-  F/ m
( ph  /\  n  e.  Z )
11 simpll 790 . . . . 5  |-  ( ( ( ph  /\  n  e.  Z )  /\  m  e.  ( ZZ>= `  n )
)  ->  ph )
124uztrn2 11705 . . . . . . . 8  |-  ( ( n  e.  Z  /\  j  e.  ( ZZ>= `  n ) )  -> 
j  e.  Z )
1312ssd 39252 . . . . . . 7  |-  ( n  e.  Z  ->  ( ZZ>=
`  n )  C_  Z )
1413sselda 3603 . . . . . 6  |-  ( ( n  e.  Z  /\  m  e.  ( ZZ>= `  n ) )  ->  m  e.  Z )
1514adantll 750 . . . . 5  |-  ( ( ( ph  /\  n  e.  Z )  /\  m  e.  ( ZZ>= `  n )
)  ->  m  e.  Z )
16 allbutfifvre.3 . . . . . . 7  |-  ( (
ph  /\  m  e.  Z )  ->  ( F `  m ) : dom  ( F `  m ) --> RR )
1716ffvelrnda 6359 . . . . . 6  |-  ( ( ( ph  /\  m  e.  Z )  /\  X  e.  dom  ( F `  m ) )  -> 
( ( F `  m ) `  X
)  e.  RR )
1817ex 450 . . . . 5  |-  ( (
ph  /\  m  e.  Z )  ->  ( X  e.  dom  ( F `
 m )  -> 
( ( F `  m ) `  X
)  e.  RR ) )
1911, 15, 18syl2anc 693 . . . 4  |-  ( ( ( ph  /\  n  e.  Z )  /\  m  e.  ( ZZ>= `  n )
)  ->  ( X  e.  dom  ( F `  m )  ->  (
( F `  m
) `  X )  e.  RR ) )
2010, 19ralimdaa 2958 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  ( A. m  e.  ( ZZ>=
`  n ) X  e.  dom  ( F `
 m )  ->  A. m  e.  ( ZZ>=
`  n ) ( ( F `  m
) `  X )  e.  RR ) )
2120reximdva 3017 . 2  |-  ( ph  ->  ( E. n  e.  Z  A. m  e.  ( ZZ>= `  n ) X  e.  dom  ( F `
 m )  ->  E. n  e.  Z  A. m  e.  ( ZZ>=
`  n ) ( ( F `  m
) `  X )  e.  RR ) )
227, 21mpd 15 1  |-  ( ph  ->  E. n  e.  Z  A. m  e.  ( ZZ>=
`  n ) ( ( F `  m
) `  X )  e.  RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   A.wral 2912   E.wrex 2913   U_ciun 4520   |^|_ciin 4521   dom cdm 5114   -->wf 5884   ` cfv 5888   RRcr 9935   ZZ>=cuz 11687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688
This theorem is referenced by:  fnlimabslt  39911
  Copyright terms: Public domain W3C validator