Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem61 Structured version   Visualization version   Unicode version

Theorem stoweidlem61 40278
Description: This lemma proves that there exists a function  g as in the proof in [BrosowskiDeutsh] p. 92:  g is in the subalgebra, and for all  t in  T, abs( f(t) - g(t) ) < 2*ε. Here  F is used to represent f in the paper, and  E is used to represent ε. For this lemma there's the further assumption that the function  F to be approximated is nonnegative (this assumption is removed in a later theorem). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem61.1  |-  F/_ t F
stoweidlem61.2  |-  F/ t
ph
stoweidlem61.3  |-  K  =  ( topGen `  ran  (,) )
stoweidlem61.4  |-  ( ph  ->  J  e.  Comp )
stoweidlem61.5  |-  T  = 
U. J
stoweidlem61.6  |-  ( ph  ->  T  =/=  (/) )
stoweidlem61.7  |-  C  =  ( J  Cn  K
)
stoweidlem61.8  |-  ( ph  ->  A  C_  C )
stoweidlem61.9  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem61.10  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem61.11  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem61.12  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
stoweidlem61.13  |-  ( ph  ->  F  e.  C )
stoweidlem61.14  |-  ( ph  ->  A. t  e.  T 
0  <_  ( F `  t ) )
stoweidlem61.15  |-  ( ph  ->  E  e.  RR+ )
stoweidlem61.16  |-  ( ph  ->  E  <  ( 1  /  3 ) )
Assertion
Ref Expression
stoweidlem61  |-  ( ph  ->  E. g  e.  A  A. t  e.  T  ( abs `  ( ( g `  t )  -  ( F `  t ) ) )  <  ( 2  x.  E ) )
Distinct variable groups:    f, g,
q, r, t, x, A    f, E, g, q, r, t, x   
f, F, g, q, r, x    f, J, g, r, t    T, f, g, q, r, t, x    ph, f, g, q, r, x    t, K
Allowed substitution hints:    ph( t)    C( x, t, f, g, r, q)    F( t)    J( x, q)    K( x, f, g, r, q)

Proof of Theorem stoweidlem61
Dummy variables  j  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem61.1 . . 3  |-  F/_ t F
2 stoweidlem61.2 . . 3  |-  F/ t
ph
3 stoweidlem61.3 . . 3  |-  K  =  ( topGen `  ran  (,) )
4 stoweidlem61.5 . . 3  |-  T  = 
U. J
5 stoweidlem61.7 . . 3  |-  C  =  ( J  Cn  K
)
6 eqid 2622 . . 3  |-  ( j  e.  ( 0 ... n )  |->  { t  e.  T  |  ( F `  t )  <_  ( ( j  -  ( 1  / 
3 ) )  x.  E ) } )  =  ( j  e.  ( 0 ... n
)  |->  { t  e.  T  |  ( F `
 t )  <_ 
( ( j  -  ( 1  /  3
) )  x.  E
) } )
7 eqid 2622 . . 3  |-  ( j  e.  ( 0 ... n )  |->  { t  e.  T  |  ( ( j  +  ( 1  /  3 ) )  x.  E )  <_  ( F `  t ) } )  =  ( j  e.  ( 0 ... n
)  |->  { t  e.  T  |  ( ( j  +  ( 1  /  3 ) )  x.  E )  <_ 
( F `  t
) } )
8 stoweidlem61.4 . . 3  |-  ( ph  ->  J  e.  Comp )
9 stoweidlem61.6 . . 3  |-  ( ph  ->  T  =/=  (/) )
10 stoweidlem61.8 . . 3  |-  ( ph  ->  A  C_  C )
11 stoweidlem61.9 . . 3  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
12 stoweidlem61.10 . . 3  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
13 stoweidlem61.11 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
14 stoweidlem61.12 . . 3  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
15 stoweidlem61.13 . . 3  |-  ( ph  ->  F  e.  C )
16 stoweidlem61.14 . . 3  |-  ( ph  ->  A. t  e.  T 
0  <_  ( F `  t ) )
17 stoweidlem61.15 . . 3  |-  ( ph  ->  E  e.  RR+ )
18 stoweidlem61.16 . . 3  |-  ( ph  ->  E  <  ( 1  /  3 ) )
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18stoweidlem60 40277 . 2  |-  ( ph  ->  E. g  e.  A  A. t  e.  T  E. j  e.  RR  ( ( ( ( j  -  ( 4  /  3 ) )  x.  E )  < 
( F `  t
)  /\  ( F `  t )  <_  (
( j  -  (
1  /  3 ) )  x.  E ) )  /\  ( ( g `  t )  <  ( ( j  +  ( 1  / 
3 ) )  x.  E )  /\  (
( j  -  (
4  /  3 ) )  x.  E )  <  ( g `  t ) ) ) )
20 nfv 1843 . . . . 5  |-  F/ t  g  e.  A
212, 20nfan 1828 . . . 4  |-  F/ t ( ph  /\  g  e.  A )
2217ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  g  e.  A )  /\  t  e.  T )  ->  E  e.  RR+ )
233, 4, 5, 15fcnre 39184 . . . . . . 7  |-  ( ph  ->  F : T --> RR )
2423ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  ( F `  t )  e.  RR )
2524adantlr 751 . . . . 5  |-  ( ( ( ph  /\  g  e.  A )  /\  t  e.  T )  ->  ( F `  t )  e.  RR )
2610sselda 3603 . . . . . . 7  |-  ( (
ph  /\  g  e.  A )  ->  g  e.  C )
273, 4, 5, 26fcnre 39184 . . . . . 6  |-  ( (
ph  /\  g  e.  A )  ->  g : T --> RR )
2827ffvelrnda 6359 . . . . 5  |-  ( ( ( ph  /\  g  e.  A )  /\  t  e.  T )  ->  (
g `  t )  e.  RR )
29 simpll1 1100 . . . . . . . 8  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  E  e.  RR+ )
30 simpll2 1101 . . . . . . . 8  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  ( F `  t )  e.  RR )
31 simpll3 1102 . . . . . . . 8  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  ( g `  t )  e.  RR )
32 simplr 792 . . . . . . . 8  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  j  e.  RR )
33 simprll 802 . . . . . . . 8  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  ( (
j  -  ( 4  /  3 ) )  x.  E )  < 
( F `  t
) )
34 simprlr 803 . . . . . . . 8  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  ( F `  t )  <_  (
( j  -  (
1  /  3 ) )  x.  E ) )
35 simprrr 805 . . . . . . . 8  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  ( (
j  -  ( 4  /  3 ) )  x.  E )  < 
( g `  t
) )
36 simprrl 804 . . . . . . . 8  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  ( g `  t )  <  (
( j  +  ( 1  /  3 ) )  x.  E ) )
3729, 30, 31, 32, 33, 34, 35, 36stoweidlem13 40230 . . . . . . 7  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  ( abs `  ( ( g `  t )  -  ( F `  t )
) )  <  (
2  x.  E ) )
3837ex 450 . . . . . 6  |-  ( ( ( E  e.  RR+  /\  ( F `  t
)  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  ->  ( ( ( ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) )  ->  ( abs `  (
( g `  t
)  -  ( F `
 t ) ) )  <  ( 2  x.  E ) ) )
3938rexlimdva 3031 . . . . 5  |-  ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `
 t )  e.  RR )  ->  ( E. j  e.  RR  ( ( ( ( j  -  ( 4  /  3 ) )  x.  E )  < 
( F `  t
)  /\  ( F `  t )  <_  (
( j  -  (
1  /  3 ) )  x.  E ) )  /\  ( ( g `  t )  <  ( ( j  +  ( 1  / 
3 ) )  x.  E )  /\  (
( j  -  (
4  /  3 ) )  x.  E )  <  ( g `  t ) ) )  ->  ( abs `  (
( g `  t
)  -  ( F `
 t ) ) )  <  ( 2  x.  E ) ) )
4022, 25, 28, 39syl3anc 1326 . . . 4  |-  ( ( ( ph  /\  g  e.  A )  /\  t  e.  T )  ->  ( E. j  e.  RR  ( ( ( ( j  -  ( 4  /  3 ) )  x.  E )  < 
( F `  t
)  /\  ( F `  t )  <_  (
( j  -  (
1  /  3 ) )  x.  E ) )  /\  ( ( g `  t )  <  ( ( j  +  ( 1  / 
3 ) )  x.  E )  /\  (
( j  -  (
4  /  3 ) )  x.  E )  <  ( g `  t ) ) )  ->  ( abs `  (
( g `  t
)  -  ( F `
 t ) ) )  <  ( 2  x.  E ) ) )
4121, 40ralimdaa 2958 . . 3  |-  ( (
ph  /\  g  e.  A )  ->  ( A. t  e.  T  E. j  e.  RR  ( ( ( ( j  -  ( 4  /  3 ) )  x.  E )  < 
( F `  t
)  /\  ( F `  t )  <_  (
( j  -  (
1  /  3 ) )  x.  E ) )  /\  ( ( g `  t )  <  ( ( j  +  ( 1  / 
3 ) )  x.  E )  /\  (
( j  -  (
4  /  3 ) )  x.  E )  <  ( g `  t ) ) )  ->  A. t  e.  T  ( abs `  ( ( g `  t )  -  ( F `  t ) ) )  <  ( 2  x.  E ) ) )
4241reximdva 3017 . 2  |-  ( ph  ->  ( E. g  e.  A  A. t  e.  T  E. j  e.  RR  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) )  ->  E. g  e.  A  A. t  e.  T  ( abs `  ( ( g `  t )  -  ( F `  t ) ) )  <  ( 2  x.  E ) ) )
4319, 42mpd 15 1  |-  ( ph  ->  E. g  e.  A  A. t  e.  T  ( abs `  ( ( g `  t )  -  ( F `  t ) ) )  <  ( 2  x.  E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   (/)c0 3915   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   2c2 11070   3c3 11071   4c4 11072   RR+crp 11832   (,)cioo 12175   ...cfz 12326   abscabs 13974   topGenctg 16098    Cn ccn 21028   Compccmp 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127
This theorem is referenced by:  stoweidlem62  40279
  Copyright terms: Public domain W3C validator