MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralss Structured version   Visualization version   Unicode version

Theorem ralss 3668
Description: Restricted universal quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
ralss  |-  ( A 
C_  B  ->  ( A. x  e.  A  ph  <->  A. x  e.  B  ( x  e.  A  ->  ph ) ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem ralss
StepHypRef Expression
1 ssel 3597 . . . . 5  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
21pm4.71rd 667 . . . 4  |-  ( A 
C_  B  ->  (
x  e.  A  <->  ( x  e.  B  /\  x  e.  A ) ) )
32imbi1d 331 . . 3  |-  ( A 
C_  B  ->  (
( x  e.  A  ->  ph )  <->  ( (
x  e.  B  /\  x  e.  A )  ->  ph ) ) )
4 impexp 462 . . 3  |-  ( ( ( x  e.  B  /\  x  e.  A
)  ->  ph )  <->  ( x  e.  B  ->  ( x  e.  A  ->  ph )
) )
53, 4syl6bb 276 . 2  |-  ( A 
C_  B  ->  (
( x  e.  A  ->  ph )  <->  ( x  e.  B  ->  ( x  e.  A  ->  ph )
) ) )
65ralbidv2 2984 1  |-  ( A 
C_  B  ->  ( A. x  e.  A  ph  <->  A. x  e.  B  ( x  e.  A  ->  ph ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990   A.wral 2912    C_ wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-ral 2917  df-in 3581  df-ss 3588
This theorem is referenced by:  acsfn  16320  acsfn1  16322  acsfn2  16324  mdetunilem9  20426  acsfn1p  37769  ntrneik3  38394  ntrneix3  38395  ntrneik13  38396  ntrneix13  38397
  Copyright terms: Public domain W3C validator