MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfn Structured version   Visualization version   Unicode version

Theorem acsfn 16320
Description: Algebraicity of a conditional point closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
acsfn  |-  ( ( ( X  e.  V  /\  K  e.  X
)  /\  ( T  C_  X  /\  T  e. 
Fin ) )  ->  { a  e.  ~P X  |  ( T  C_  a  ->  K  e.  a ) }  e.  (ACS `  X ) )
Distinct variable groups:    K, a    T, a    V, a    X, a

Proof of Theorem acsfn
Dummy variables  b 
c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmpt 5926 . . . . . . 7  |-  Fun  (
b  e.  ~P X  |->  if ( b  =  T ,  { K } ,  (/) ) )
2 funiunfv 6506 . . . . . . 7  |-  ( Fun  ( b  e.  ~P X  |->  if ( b  =  T ,  { K } ,  (/) ) )  ->  U_ c  e.  ( ~P a  i^i  Fin ) ( ( b  e.  ~P X  |->  if ( b  =  T ,  { K } ,  (/) ) ) `  c )  =  U. ( ( b  e. 
~P X  |->  if ( b  =  T ,  { K } ,  (/) ) ) " ( ~P a  i^i  Fin )
) )
31, 2mp1i 13 . . . . . 6  |-  ( ( ( ( X  e.  V  /\  K  e.  X )  /\  ( T  C_  X  /\  T  e.  Fin ) )  /\  a  e.  ~P X
)  ->  U_ c  e.  ( ~P a  i^i 
Fin ) ( ( b  e.  ~P X  |->  if ( b  =  T ,  { K } ,  (/) ) ) `
 c )  = 
U. ( ( b  e.  ~P X  |->  if ( b  =  T ,  { K } ,  (/) ) ) "
( ~P a  i^i 
Fin ) ) )
4 inss1 3833 . . . . . . . . . . . . 13  |-  ( ~P a  i^i  Fin )  C_ 
~P a
54sseli 3599 . . . . . . . . . . . 12  |-  ( c  e.  ( ~P a  i^i  Fin )  ->  c  e.  ~P a )
65elpwid 4170 . . . . . . . . . . 11  |-  ( c  e.  ( ~P a  i^i  Fin )  ->  c  C_  a )
7 elpwi 4168 . . . . . . . . . . 11  |-  ( a  e.  ~P X  -> 
a  C_  X )
86, 7sylan9ssr 3617 . . . . . . . . . 10  |-  ( ( a  e.  ~P X  /\  c  e.  ( ~P a  i^i  Fin )
)  ->  c  C_  X )
9 selpw 4165 . . . . . . . . . 10  |-  ( c  e.  ~P X  <->  c  C_  X )
108, 9sylibr 224 . . . . . . . . 9  |-  ( ( a  e.  ~P X  /\  c  e.  ( ~P a  i^i  Fin )
)  ->  c  e.  ~P X )
1110adantll 750 . . . . . . . 8  |-  ( ( ( ( ( X  e.  V  /\  K  e.  X )  /\  ( T  C_  X  /\  T  e.  Fin ) )  /\  a  e.  ~P X
)  /\  c  e.  ( ~P a  i^i  Fin ) )  ->  c  e.  ~P X )
12 eqeq1 2626 . . . . . . . . . 10  |-  ( b  =  c  ->  (
b  =  T  <->  c  =  T ) )
1312ifbid 4108 . . . . . . . . 9  |-  ( b  =  c  ->  if ( b  =  T ,  { K } ,  (/) )  =  if ( c  =  T ,  { K } ,  (/) ) )
14 eqid 2622 . . . . . . . . 9  |-  ( b  e.  ~P X  |->  if ( b  =  T ,  { K } ,  (/) ) )  =  ( b  e.  ~P X  |->  if ( b  =  T ,  { K } ,  (/) ) )
15 snex 4908 . . . . . . . . . 10  |-  { K }  e.  _V
16 0ex 4790 . . . . . . . . . 10  |-  (/)  e.  _V
1715, 16ifex 4156 . . . . . . . . 9  |-  if ( c  =  T ,  { K } ,  (/) )  e.  _V
1813, 14, 17fvmpt 6282 . . . . . . . 8  |-  ( c  e.  ~P X  -> 
( ( b  e. 
~P X  |->  if ( b  =  T ,  { K } ,  (/) ) ) `  c
)  =  if ( c  =  T ,  { K } ,  (/) ) )
1911, 18syl 17 . . . . . . 7  |-  ( ( ( ( ( X  e.  V  /\  K  e.  X )  /\  ( T  C_  X  /\  T  e.  Fin ) )  /\  a  e.  ~P X
)  /\  c  e.  ( ~P a  i^i  Fin ) )  ->  (
( b  e.  ~P X  |->  if ( b  =  T ,  { K } ,  (/) ) ) `
 c )  =  if ( c  =  T ,  { K } ,  (/) ) )
2019iuneq2dv 4542 . . . . . 6  |-  ( ( ( ( X  e.  V  /\  K  e.  X )  /\  ( T  C_  X  /\  T  e.  Fin ) )  /\  a  e.  ~P X
)  ->  U_ c  e.  ( ~P a  i^i 
Fin ) ( ( b  e.  ~P X  |->  if ( b  =  T ,  { K } ,  (/) ) ) `
 c )  = 
U_ c  e.  ( ~P a  i^i  Fin ) if ( c  =  T ,  { K } ,  (/) ) )
213, 20eqtr3d 2658 . . . . 5  |-  ( ( ( ( X  e.  V  /\  K  e.  X )  /\  ( T  C_  X  /\  T  e.  Fin ) )  /\  a  e.  ~P X
)  ->  U. (
( b  e.  ~P X  |->  if ( b  =  T ,  { K } ,  (/) ) )
" ( ~P a  i^i  Fin ) )  = 
U_ c  e.  ( ~P a  i^i  Fin ) if ( c  =  T ,  { K } ,  (/) ) )
2221sseq1d 3632 . . . 4  |-  ( ( ( ( X  e.  V  /\  K  e.  X )  /\  ( T  C_  X  /\  T  e.  Fin ) )  /\  a  e.  ~P X
)  ->  ( U. ( ( b  e. 
~P X  |->  if ( b  =  T ,  { K } ,  (/) ) ) " ( ~P a  i^i  Fin )
)  C_  a  <->  U_ c  e.  ( ~P a  i^i 
Fin ) if ( c  =  T ,  { K } ,  (/) )  C_  a ) )
23 iunss 4561 . . . . 5  |-  ( U_ c  e.  ( ~P a  i^i  Fin ) if ( c  =  T ,  { K } ,  (/) )  C_  a  <->  A. c  e.  ( ~P a  i^i  Fin ) if ( c  =  T ,  { K } ,  (/) )  C_  a
)
24 sseq1 3626 . . . . . . . . 9  |-  ( { K }  =  if ( c  =  T ,  { K } ,  (/) )  ->  ( { K }  C_  a  <->  if ( c  =  T ,  { K } ,  (/) )  C_  a
) )
2524bibi1d 333 . . . . . . . 8  |-  ( { K }  =  if ( c  =  T ,  { K } ,  (/) )  ->  (
( { K }  C_  a  <->  ( c  =  T  ->  K  e.  a ) )  <->  ( if ( c  =  T ,  { K } ,  (/) )  C_  a  <->  ( c  =  T  ->  K  e.  a )
) ) )
26 sseq1 3626 . . . . . . . . 9  |-  ( (/)  =  if ( c  =  T ,  { K } ,  (/) )  -> 
( (/)  C_  a  <->  if (
c  =  T ,  { K } ,  (/) )  C_  a ) )
2726bibi1d 333 . . . . . . . 8  |-  ( (/)  =  if ( c  =  T ,  { K } ,  (/) )  -> 
( ( (/)  C_  a  <->  ( c  =  T  ->  K  e.  a )
)  <->  ( if ( c  =  T ,  { K } ,  (/) )  C_  a  <->  ( c  =  T  ->  K  e.  a ) ) ) )
28 snssg 4327 . . . . . . . . . 10  |-  ( K  e.  X  ->  ( K  e.  a  <->  { K }  C_  a ) )
2928adantr 481 . . . . . . . . 9  |-  ( ( K  e.  X  /\  c  =  T )  ->  ( K  e.  a  <->  { K }  C_  a
) )
30 biimt 350 . . . . . . . . . 10  |-  ( c  =  T  ->  ( K  e.  a  <->  ( c  =  T  ->  K  e.  a ) ) )
3130adantl 482 . . . . . . . . 9  |-  ( ( K  e.  X  /\  c  =  T )  ->  ( K  e.  a  <-> 
( c  =  T  ->  K  e.  a ) ) )
3229, 31bitr3d 270 . . . . . . . 8  |-  ( ( K  e.  X  /\  c  =  T )  ->  ( { K }  C_  a  <->  ( c  =  T  ->  K  e.  a ) ) )
33 0ss 3972 . . . . . . . . . . 11  |-  (/)  C_  a
3433a1i 11 . . . . . . . . . 10  |-  ( -.  c  =  T  ->  (/)  C_  a )
35 pm2.21 120 . . . . . . . . . 10  |-  ( -.  c  =  T  -> 
( c  =  T  ->  K  e.  a ) )
3634, 352thd 255 . . . . . . . . 9  |-  ( -.  c  =  T  -> 
( (/)  C_  a  <->  ( c  =  T  ->  K  e.  a ) ) )
3736adantl 482 . . . . . . . 8  |-  ( ( K  e.  X  /\  -.  c  =  T
)  ->  ( (/)  C_  a  <->  ( c  =  T  ->  K  e.  a )
) )
3825, 27, 32, 37ifbothda 4123 . . . . . . 7  |-  ( K  e.  X  ->  ( if ( c  =  T ,  { K } ,  (/) )  C_  a  <->  ( c  =  T  ->  K  e.  a )
) )
3938ralbidv 2986 . . . . . 6  |-  ( K  e.  X  ->  ( A. c  e.  ( ~P a  i^i  Fin ) if ( c  =  T ,  { K } ,  (/) )  C_  a  <->  A. c  e.  ( ~P a  i^i  Fin )
( c  =  T  ->  K  e.  a ) ) )
4039ad3antlr 767 . . . . 5  |-  ( ( ( ( X  e.  V  /\  K  e.  X )  /\  ( T  C_  X  /\  T  e.  Fin ) )  /\  a  e.  ~P X
)  ->  ( A. c  e.  ( ~P a  i^i  Fin ) if ( c  =  T ,  { K } ,  (/) )  C_  a  <->  A. c  e.  ( ~P a  i^i  Fin )
( c  =  T  ->  K  e.  a ) ) )
4123, 40syl5bb 272 . . . 4  |-  ( ( ( ( X  e.  V  /\  K  e.  X )  /\  ( T  C_  X  /\  T  e.  Fin ) )  /\  a  e.  ~P X
)  ->  ( U_ c  e.  ( ~P a  i^i  Fin ) if ( c  =  T ,  { K } ,  (/) )  C_  a  <->  A. c  e.  ( ~P a  i^i  Fin )
( c  =  T  ->  K  e.  a ) ) )
42 sspwb 4917 . . . . . . . . 9  |-  ( a 
C_  X  <->  ~P a  C_ 
~P X )
437, 42sylib 208 . . . . . . . 8  |-  ( a  e.  ~P X  ->  ~P a  C_  ~P X
)
444, 43syl5ss 3614 . . . . . . 7  |-  ( a  e.  ~P X  -> 
( ~P a  i^i 
Fin )  C_  ~P X )
4544adantl 482 . . . . . 6  |-  ( ( ( ( X  e.  V  /\  K  e.  X )  /\  ( T  C_  X  /\  T  e.  Fin ) )  /\  a  e.  ~P X
)  ->  ( ~P a  i^i  Fin )  C_  ~P X )
46 ralss 3668 . . . . . 6  |-  ( ( ~P a  i^i  Fin )  C_  ~P X  -> 
( A. c  e.  ( ~P a  i^i 
Fin ) ( c  =  T  ->  K  e.  a )  <->  A. c  e.  ~P  X ( c  e.  ( ~P a  i^i  Fin )  ->  (
c  =  T  ->  K  e.  a )
) ) )
4745, 46syl 17 . . . . 5  |-  ( ( ( ( X  e.  V  /\  K  e.  X )  /\  ( T  C_  X  /\  T  e.  Fin ) )  /\  a  e.  ~P X
)  ->  ( A. c  e.  ( ~P a  i^i  Fin ) ( c  =  T  ->  K  e.  a )  <->  A. c  e.  ~P  X
( c  e.  ( ~P a  i^i  Fin )  ->  ( c  =  T  ->  K  e.  a ) ) ) )
48 bi2.04 376 . . . . . . 7  |-  ( ( c  e.  ( ~P a  i^i  Fin )  ->  ( c  =  T  ->  K  e.  a ) )  <->  ( c  =  T  ->  ( c  e.  ( ~P a  i^i  Fin )  ->  K  e.  a ) ) )
4948ralbii 2980 . . . . . 6  |-  ( A. c  e.  ~P  X
( c  e.  ( ~P a  i^i  Fin )  ->  ( c  =  T  ->  K  e.  a ) )  <->  A. c  e.  ~P  X ( c  =  T  ->  (
c  e.  ( ~P a  i^i  Fin )  ->  K  e.  a ) ) )
50 elpwg 4166 . . . . . . . . 9  |-  ( T  e.  Fin  ->  ( T  e.  ~P X  <->  T 
C_  X ) )
5150biimparc 504 . . . . . . . 8  |-  ( ( T  C_  X  /\  T  e.  Fin )  ->  T  e.  ~P X
)
5251ad2antlr 763 . . . . . . 7  |-  ( ( ( ( X  e.  V  /\  K  e.  X )  /\  ( T  C_  X  /\  T  e.  Fin ) )  /\  a  e.  ~P X
)  ->  T  e.  ~P X )
53 eleq1 2689 . . . . . . . . 9  |-  ( c  =  T  ->  (
c  e.  ( ~P a  i^i  Fin )  <->  T  e.  ( ~P a  i^i  Fin ) ) )
5453imbi1d 331 . . . . . . . 8  |-  ( c  =  T  ->  (
( c  e.  ( ~P a  i^i  Fin )  ->  K  e.  a )  <->  ( T  e.  ( ~P a  i^i 
Fin )  ->  K  e.  a ) ) )
5554ceqsralv 3234 . . . . . . 7  |-  ( T  e.  ~P X  -> 
( A. c  e. 
~P  X ( c  =  T  ->  (
c  e.  ( ~P a  i^i  Fin )  ->  K  e.  a ) )  <->  ( T  e.  ( ~P a  i^i 
Fin )  ->  K  e.  a ) ) )
5652, 55syl 17 . . . . . 6  |-  ( ( ( ( X  e.  V  /\  K  e.  X )  /\  ( T  C_  X  /\  T  e.  Fin ) )  /\  a  e.  ~P X
)  ->  ( A. c  e.  ~P  X
( c  =  T  ->  ( c  e.  ( ~P a  i^i 
Fin )  ->  K  e.  a ) )  <->  ( T  e.  ( ~P a  i^i 
Fin )  ->  K  e.  a ) ) )
5749, 56syl5bb 272 . . . . 5  |-  ( ( ( ( X  e.  V  /\  K  e.  X )  /\  ( T  C_  X  /\  T  e.  Fin ) )  /\  a  e.  ~P X
)  ->  ( A. c  e.  ~P  X
( c  e.  ( ~P a  i^i  Fin )  ->  ( c  =  T  ->  K  e.  a ) )  <->  ( T  e.  ( ~P a  i^i 
Fin )  ->  K  e.  a ) ) )
58 vex 3203 . . . . . . . 8  |-  a  e. 
_V
5958elpw2 4828 . . . . . . 7  |-  ( T  e.  ~P a  <->  T  C_  a
)
60 simplrr 801 . . . . . . . . 9  |-  ( ( ( ( X  e.  V  /\  K  e.  X )  /\  ( T  C_  X  /\  T  e.  Fin ) )  /\  a  e.  ~P X
)  ->  T  e.  Fin )
6160biantrud 528 . . . . . . . 8  |-  ( ( ( ( X  e.  V  /\  K  e.  X )  /\  ( T  C_  X  /\  T  e.  Fin ) )  /\  a  e.  ~P X
)  ->  ( T  e.  ~P a  <->  ( T  e.  ~P a  /\  T  e.  Fin ) ) )
62 elin 3796 . . . . . . . 8  |-  ( T  e.  ( ~P a  i^i  Fin )  <->  ( T  e.  ~P a  /\  T  e.  Fin ) )
6361, 62syl6bbr 278 . . . . . . 7  |-  ( ( ( ( X  e.  V  /\  K  e.  X )  /\  ( T  C_  X  /\  T  e.  Fin ) )  /\  a  e.  ~P X
)  ->  ( T  e.  ~P a  <->  T  e.  ( ~P a  i^i  Fin ) ) )
6459, 63syl5rbbr 275 . . . . . 6  |-  ( ( ( ( X  e.  V  /\  K  e.  X )  /\  ( T  C_  X  /\  T  e.  Fin ) )  /\  a  e.  ~P X
)  ->  ( T  e.  ( ~P a  i^i 
Fin )  <->  T  C_  a
) )
6564imbi1d 331 . . . . 5  |-  ( ( ( ( X  e.  V  /\  K  e.  X )  /\  ( T  C_  X  /\  T  e.  Fin ) )  /\  a  e.  ~P X
)  ->  ( ( T  e.  ( ~P a  i^i  Fin )  ->  K  e.  a )  <->  ( T  C_  a  ->  K  e.  a ) ) )
6647, 57, 653bitrd 294 . . . 4  |-  ( ( ( ( X  e.  V  /\  K  e.  X )  /\  ( T  C_  X  /\  T  e.  Fin ) )  /\  a  e.  ~P X
)  ->  ( A. c  e.  ( ~P a  i^i  Fin ) ( c  =  T  ->  K  e.  a )  <->  ( T  C_  a  ->  K  e.  a ) ) )
6722, 41, 663bitrrd 295 . . 3  |-  ( ( ( ( X  e.  V  /\  K  e.  X )  /\  ( T  C_  X  /\  T  e.  Fin ) )  /\  a  e.  ~P X
)  ->  ( ( T  C_  a  ->  K  e.  a )  <->  U. (
( b  e.  ~P X  |->  if ( b  =  T ,  { K } ,  (/) ) )
" ( ~P a  i^i  Fin ) )  C_  a ) )
6867rabbidva 3188 . 2  |-  ( ( ( X  e.  V  /\  K  e.  X
)  /\  ( T  C_  X  /\  T  e. 
Fin ) )  ->  { a  e.  ~P X  |  ( T  C_  a  ->  K  e.  a ) }  =  { a  e.  ~P X  |  U. (
( b  e.  ~P X  |->  if ( b  =  T ,  { K } ,  (/) ) )
" ( ~P a  i^i  Fin ) )  C_  a } )
69 simpll 790 . . 3  |-  ( ( ( X  e.  V  /\  K  e.  X
)  /\  ( T  C_  X  /\  T  e. 
Fin ) )  ->  X  e.  V )
70 snelpwi 4912 . . . . . . 7  |-  ( K  e.  X  ->  { K }  e.  ~P X
)
7170ad2antlr 763 . . . . . 6  |-  ( ( ( X  e.  V  /\  K  e.  X
)  /\  ( T  C_  X  /\  T  e. 
Fin ) )  ->  { K }  e.  ~P X )
72 0elpw 4834 . . . . . 6  |-  (/)  e.  ~P X
73 ifcl 4130 . . . . . 6  |-  ( ( { K }  e.  ~P X  /\  (/)  e.  ~P X )  ->  if ( b  =  T ,  { K } ,  (/) )  e.  ~P X )
7471, 72, 73sylancl 694 . . . . 5  |-  ( ( ( X  e.  V  /\  K  e.  X
)  /\  ( T  C_  X  /\  T  e. 
Fin ) )  ->  if ( b  =  T ,  { K } ,  (/) )  e.  ~P X )
7574adantr 481 . . . 4  |-  ( ( ( ( X  e.  V  /\  K  e.  X )  /\  ( T  C_  X  /\  T  e.  Fin ) )  /\  b  e.  ~P X
)  ->  if (
b  =  T ,  { K } ,  (/) )  e.  ~P X
)
7675, 14fmptd 6385 . . 3  |-  ( ( ( X  e.  V  /\  K  e.  X
)  /\  ( T  C_  X  /\  T  e. 
Fin ) )  -> 
( b  e.  ~P X  |->  if ( b  =  T ,  { K } ,  (/) ) ) : ~P X --> ~P X
)
77 isacs1i 16318 . . 3  |-  ( ( X  e.  V  /\  ( b  e.  ~P X  |->  if ( b  =  T ,  { K } ,  (/) ) ) : ~P X --> ~P X
)  ->  { a  e.  ~P X  |  U. ( ( b  e. 
~P X  |->  if ( b  =  T ,  { K } ,  (/) ) ) " ( ~P a  i^i  Fin )
)  C_  a }  e.  (ACS `  X )
)
7869, 76, 77syl2anc 693 . 2  |-  ( ( ( X  e.  V  /\  K  e.  X
)  /\  ( T  C_  X  /\  T  e. 
Fin ) )  ->  { a  e.  ~P X  |  U. (
( b  e.  ~P X  |->  if ( b  =  T ,  { K } ,  (/) ) )
" ( ~P a  i^i  Fin ) )  C_  a }  e.  (ACS `  X ) )
7968, 78eqeltrd 2701 1  |-  ( ( ( X  e.  V  /\  K  e.  X
)  /\  ( T  C_  X  /\  T  e. 
Fin ) )  ->  { a  e.  ~P X  |  ( T  C_  a  ->  K  e.  a ) }  e.  (ACS `  X ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   {csn 4177   U.cuni 4436   U_ciun 4520    |-> cmpt 4729   "cima 5117   Fun wfun 5882   -->wf 5884   ` cfv 5888   Fincfn 7955  ACScacs 16245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-mre 16246  df-acs 16249
This theorem is referenced by:  acsfn0  16321  acsfn1  16322  acsfn2  16324  acsfn1p  37769
  Copyright terms: Public domain W3C validator