| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acsfn | Structured version Visualization version Unicode version | ||
| Description: Algebraicity of a conditional point closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| acsfn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt 5926 |
. . . . . . 7
| |
| 2 | funiunfv 6506 |
. . . . . . 7
| |
| 3 | 1, 2 | mp1i 13 |
. . . . . 6
|
| 4 | inss1 3833 |
. . . . . . . . . . . . 13
| |
| 5 | 4 | sseli 3599 |
. . . . . . . . . . . 12
|
| 6 | 5 | elpwid 4170 |
. . . . . . . . . . 11
|
| 7 | elpwi 4168 |
. . . . . . . . . . 11
| |
| 8 | 6, 7 | sylan9ssr 3617 |
. . . . . . . . . 10
|
| 9 | selpw 4165 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | sylibr 224 |
. . . . . . . . 9
|
| 11 | 10 | adantll 750 |
. . . . . . . 8
|
| 12 | eqeq1 2626 |
. . . . . . . . . 10
| |
| 13 | 12 | ifbid 4108 |
. . . . . . . . 9
|
| 14 | eqid 2622 |
. . . . . . . . 9
| |
| 15 | snex 4908 |
. . . . . . . . . 10
| |
| 16 | 0ex 4790 |
. . . . . . . . . 10
| |
| 17 | 15, 16 | ifex 4156 |
. . . . . . . . 9
|
| 18 | 13, 14, 17 | fvmpt 6282 |
. . . . . . . 8
|
| 19 | 11, 18 | syl 17 |
. . . . . . 7
|
| 20 | 19 | iuneq2dv 4542 |
. . . . . 6
|
| 21 | 3, 20 | eqtr3d 2658 |
. . . . 5
|
| 22 | 21 | sseq1d 3632 |
. . . 4
|
| 23 | iunss 4561 |
. . . . 5
| |
| 24 | sseq1 3626 |
. . . . . . . . 9
| |
| 25 | 24 | bibi1d 333 |
. . . . . . . 8
|
| 26 | sseq1 3626 |
. . . . . . . . 9
| |
| 27 | 26 | bibi1d 333 |
. . . . . . . 8
|
| 28 | snssg 4327 |
. . . . . . . . . 10
| |
| 29 | 28 | adantr 481 |
. . . . . . . . 9
|
| 30 | biimt 350 |
. . . . . . . . . 10
| |
| 31 | 30 | adantl 482 |
. . . . . . . . 9
|
| 32 | 29, 31 | bitr3d 270 |
. . . . . . . 8
|
| 33 | 0ss 3972 |
. . . . . . . . . . 11
| |
| 34 | 33 | a1i 11 |
. . . . . . . . . 10
|
| 35 | pm2.21 120 |
. . . . . . . . . 10
| |
| 36 | 34, 35 | 2thd 255 |
. . . . . . . . 9
|
| 37 | 36 | adantl 482 |
. . . . . . . 8
|
| 38 | 25, 27, 32, 37 | ifbothda 4123 |
. . . . . . 7
|
| 39 | 38 | ralbidv 2986 |
. . . . . 6
|
| 40 | 39 | ad3antlr 767 |
. . . . 5
|
| 41 | 23, 40 | syl5bb 272 |
. . . 4
|
| 42 | sspwb 4917 |
. . . . . . . . 9
| |
| 43 | 7, 42 | sylib 208 |
. . . . . . . 8
|
| 44 | 4, 43 | syl5ss 3614 |
. . . . . . 7
|
| 45 | 44 | adantl 482 |
. . . . . 6
|
| 46 | ralss 3668 |
. . . . . 6
| |
| 47 | 45, 46 | syl 17 |
. . . . 5
|
| 48 | bi2.04 376 |
. . . . . . 7
| |
| 49 | 48 | ralbii 2980 |
. . . . . 6
|
| 50 | elpwg 4166 |
. . . . . . . . 9
| |
| 51 | 50 | biimparc 504 |
. . . . . . . 8
|
| 52 | 51 | ad2antlr 763 |
. . . . . . 7
|
| 53 | eleq1 2689 |
. . . . . . . . 9
| |
| 54 | 53 | imbi1d 331 |
. . . . . . . 8
|
| 55 | 54 | ceqsralv 3234 |
. . . . . . 7
|
| 56 | 52, 55 | syl 17 |
. . . . . 6
|
| 57 | 49, 56 | syl5bb 272 |
. . . . 5
|
| 58 | vex 3203 |
. . . . . . . 8
| |
| 59 | 58 | elpw2 4828 |
. . . . . . 7
|
| 60 | simplrr 801 |
. . . . . . . . 9
| |
| 61 | 60 | biantrud 528 |
. . . . . . . 8
|
| 62 | elin 3796 |
. . . . . . . 8
| |
| 63 | 61, 62 | syl6bbr 278 |
. . . . . . 7
|
| 64 | 59, 63 | syl5rbbr 275 |
. . . . . 6
|
| 65 | 64 | imbi1d 331 |
. . . . 5
|
| 66 | 47, 57, 65 | 3bitrd 294 |
. . . 4
|
| 67 | 22, 41, 66 | 3bitrrd 295 |
. . 3
|
| 68 | 67 | rabbidva 3188 |
. 2
|
| 69 | simpll 790 |
. . 3
| |
| 70 | snelpwi 4912 |
. . . . . . 7
| |
| 71 | 70 | ad2antlr 763 |
. . . . . 6
|
| 72 | 0elpw 4834 |
. . . . . 6
| |
| 73 | ifcl 4130 |
. . . . . 6
| |
| 74 | 71, 72, 73 | sylancl 694 |
. . . . 5
|
| 75 | 74 | adantr 481 |
. . . 4
|
| 76 | 75, 14 | fmptd 6385 |
. . 3
|
| 77 | isacs1i 16318 |
. . 3
| |
| 78 | 69, 76, 77 | syl2anc 693 |
. 2
|
| 79 | 68, 78 | eqeltrd 2701 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-mre 16246 df-acs 16249 |
| This theorem is referenced by: acsfn0 16321 acsfn1 16322 acsfn2 16324 acsfn1p 37769 |
| Copyright terms: Public domain | W3C validator |