| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexprg | Structured version Visualization version Unicode version | ||
| Description: Convert a quantification over a pair to a disjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| ralprg.1 |
|
| ralprg.2 |
|
| Ref | Expression |
|---|---|
| rexprg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4180 |
. . . 4
| |
| 2 | 1 | rexeqi 3143 |
. . 3
|
| 3 | rexun 3793 |
. . 3
| |
| 4 | 2, 3 | bitri 264 |
. 2
|
| 5 | ralprg.1 |
. . . . 5
| |
| 6 | 5 | rexsng 4219 |
. . . 4
|
| 7 | 6 | orbi1d 739 |
. . 3
|
| 8 | ralprg.2 |
. . . . 5
| |
| 9 | 8 | rexsng 4219 |
. . . 4
|
| 10 | 9 | orbi2d 738 |
. . 3
|
| 11 | 7, 10 | sylan9bb 736 |
. 2
|
| 12 | 4, 11 | syl5bb 272 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-v 3202 df-sbc 3436 df-un 3579 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: rextpg 4237 rexpr 4239 fr2nr 5092 sgrp2nmndlem5 17416 nb3grprlem2 26283 nfrgr2v 27136 3vfriswmgrlem 27141 brfvrcld 37983 rnmptpr 39358 ldepspr 42262 zlmodzxzldeplem4 42292 |
| Copyright terms: Public domain | W3C validator |