MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reps Structured version   Visualization version   Unicode version

Theorem reps 13517
Description: Construct a function mapping a half-open range of nonnegative integers to a constant. (Contributed by AV, 4-Nov-2018.)
Assertion
Ref Expression
reps  |-  ( ( S  e.  V  /\  N  e.  NN0 )  -> 
( S repeatS  N )  =  ( x  e.  ( 0..^ N ) 
|->  S ) )
Distinct variable groups:    x, N    x, S
Allowed substitution hint:    V( x)

Proof of Theorem reps
Dummy variables  n  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . . 3  |-  ( S  e.  V  ->  S  e.  _V )
21adantr 481 . 2  |-  ( ( S  e.  V  /\  N  e.  NN0 )  ->  S  e.  _V )
3 simpr 477 . 2  |-  ( ( S  e.  V  /\  N  e.  NN0 )  ->  N  e.  NN0 )
4 ovex 6678 . . 3  |-  ( 0..^ N )  e.  _V
5 mptexg 6484 . . 3  |-  ( ( 0..^ N )  e. 
_V  ->  ( x  e.  ( 0..^ N ) 
|->  S )  e.  _V )
64, 5mp1i 13 . 2  |-  ( ( S  e.  V  /\  N  e.  NN0 )  -> 
( x  e.  ( 0..^ N )  |->  S )  e.  _V )
7 oveq2 6658 . . . . 5  |-  ( n  =  N  ->  (
0..^ n )  =  ( 0..^ N ) )
87adantl 482 . . . 4  |-  ( ( s  =  S  /\  n  =  N )  ->  ( 0..^ n )  =  ( 0..^ N ) )
9 simpll 790 . . . 4  |-  ( ( ( s  =  S  /\  n  =  N )  /\  x  e.  ( 0..^ n ) )  ->  s  =  S )
108, 9mpteq12dva 4732 . . 3  |-  ( ( s  =  S  /\  n  =  N )  ->  ( x  e.  ( 0..^ n )  |->  s )  =  ( x  e.  ( 0..^ N )  |->  S ) )
11 df-reps 13306 . . 3  |- repeatS  =  ( s  e.  _V ,  n  e.  NN0  |->  ( x  e.  ( 0..^ n )  |->  s ) )
1210, 11ovmpt2ga 6790 . 2  |-  ( ( S  e.  _V  /\  N  e.  NN0  /\  (
x  e.  ( 0..^ N )  |->  S )  e.  _V )  -> 
( S repeatS  N )  =  ( x  e.  ( 0..^ N ) 
|->  S ) )
132, 3, 6, 12syl3anc 1326 1  |-  ( ( S  e.  V  /\  N  e.  NN0 )  -> 
( S repeatS  N )  =  ( x  e.  ( 0..^ N ) 
|->  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    |-> cmpt 4729  (class class class)co 6650   0cc0 9936   NN0cn0 11292  ..^cfzo 12465   repeatS creps 13298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-reps 13306
This theorem is referenced by:  repsconst  13519  repsf  13520  repswsymb  13521  repswswrd  13531  repswccat  13532  repswrevw  13533  repsco  13585
  Copyright terms: Public domain W3C validator