MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswccat Structured version   Visualization version   Unicode version

Theorem repswccat 13532
Description: The concatenation of two "repeated symbol words" with the same symbol is again a "repeated symbol word". (Contributed by AV, 4-Nov-2018.)
Assertion
Ref Expression
repswccat  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  M  e.  NN0 )  ->  (
( S repeatS  N ) ++  ( S repeatS  M ) )  =  ( S repeatS  ( N  +  M )
) )

Proof of Theorem repswccat
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 repswlen 13523 . . . . . 6  |-  ( ( S  e.  V  /\  N  e.  NN0 )  -> 
( # `  ( S repeatS  N ) )  =  N )
213adant3 1081 . . . . 5  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  M  e.  NN0 )  ->  ( # `
 ( S repeatS  N
) )  =  N )
3 repswlen 13523 . . . . . 6  |-  ( ( S  e.  V  /\  M  e.  NN0 )  -> 
( # `  ( S repeatS  M ) )  =  M )
433adant2 1080 . . . . 5  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  M  e.  NN0 )  ->  ( # `
 ( S repeatS  M
) )  =  M )
52, 4oveq12d 6668 . . . 4  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  M  e.  NN0 )  ->  (
( # `  ( S repeatS  N ) )  +  ( # `  ( S repeatS  M ) ) )  =  ( N  +  M ) )
65oveq2d 6666 . . 3  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  M  e.  NN0 )  ->  (
0..^ ( ( # `  ( S repeatS  N )
)  +  ( # `  ( S repeatS  M )
) ) )  =  ( 0..^ ( N  +  M ) ) )
7 simp1 1061 . . . . . . . 8  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  M  e.  NN0 )  ->  S  e.  V )
87adantr 481 . . . . . . 7  |-  ( ( ( S  e.  V  /\  N  e.  NN0  /\  M  e.  NN0 )  /\  x  e.  (
0..^ ( # `  ( S repeatS  N ) ) ) )  ->  S  e.  V )
9 simpl2 1065 . . . . . . 7  |-  ( ( ( S  e.  V  /\  N  e.  NN0  /\  M  e.  NN0 )  /\  x  e.  (
0..^ ( # `  ( S repeatS  N ) ) ) )  ->  N  e.  NN0 )
102oveq2d 6666 . . . . . . . . 9  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  M  e.  NN0 )  ->  (
0..^ ( # `  ( S repeatS  N ) ) )  =  ( 0..^ N ) )
1110eleq2d 2687 . . . . . . . 8  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  M  e.  NN0 )  ->  (
x  e.  ( 0..^ ( # `  ( S repeatS  N ) ) )  <-> 
x  e.  ( 0..^ N ) ) )
1211biimpa 501 . . . . . . 7  |-  ( ( ( S  e.  V  /\  N  e.  NN0  /\  M  e.  NN0 )  /\  x  e.  (
0..^ ( # `  ( S repeatS  N ) ) ) )  ->  x  e.  ( 0..^ N ) )
138, 9, 123jca 1242 . . . . . 6  |-  ( ( ( S  e.  V  /\  N  e.  NN0  /\  M  e.  NN0 )  /\  x  e.  (
0..^ ( # `  ( S repeatS  N ) ) ) )  ->  ( S  e.  V  /\  N  e. 
NN0  /\  x  e.  ( 0..^ N ) ) )
1413adantlr 751 . . . . 5  |-  ( ( ( ( S  e.  V  /\  N  e. 
NN0  /\  M  e.  NN0 )  /\  x  e.  ( 0..^ ( (
# `  ( S repeatS  N ) )  +  (
# `  ( S repeatS  M ) ) ) ) )  /\  x  e.  ( 0..^ ( # `  ( S repeatS  N )
) ) )  -> 
( S  e.  V  /\  N  e.  NN0  /\  x  e.  ( 0..^ N ) ) )
15 repswsymb 13521 . . . . 5  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  x  e.  ( 0..^ N ) )  ->  ( ( S repeatS  N ) `  x
)  =  S )
1614, 15syl 17 . . . 4  |-  ( ( ( ( S  e.  V  /\  N  e. 
NN0  /\  M  e.  NN0 )  /\  x  e.  ( 0..^ ( (
# `  ( S repeatS  N ) )  +  (
# `  ( S repeatS  M ) ) ) ) )  /\  x  e.  ( 0..^ ( # `  ( S repeatS  N )
) ) )  -> 
( ( S repeatS  N
) `  x )  =  S )
177ad2antrr 762 . . . . 5  |-  ( ( ( ( S  e.  V  /\  N  e. 
NN0  /\  M  e.  NN0 )  /\  x  e.  ( 0..^ ( (
# `  ( S repeatS  N ) )  +  (
# `  ( S repeatS  M ) ) ) ) )  /\  -.  x  e.  ( 0..^ ( # `  ( S repeatS  N )
) ) )  ->  S  e.  V )
18 simpll3 1102 . . . . 5  |-  ( ( ( ( S  e.  V  /\  N  e. 
NN0  /\  M  e.  NN0 )  /\  x  e.  ( 0..^ ( (
# `  ( S repeatS  N ) )  +  (
# `  ( S repeatS  M ) ) ) ) )  /\  -.  x  e.  ( 0..^ ( # `  ( S repeatS  N )
) ) )  ->  M  e.  NN0 )
192, 4jca 554 . . . . . . 7  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  M  e.  NN0 )  ->  (
( # `  ( S repeatS  N ) )  =  N  /\  ( # `  ( S repeatS  M )
)  =  M ) )
20 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  M  e.  NN0 )  /\  x  e.  (
0..^ ( N  +  M ) ) )  ->  x  e.  ( 0..^ ( N  +  M ) ) )
2120anim1i 592 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  M  e.  NN0 )  /\  x  e.  ( 0..^ ( N  +  M ) ) )  /\  -.  x  e.  ( 0..^ N ) )  ->  ( x  e.  ( 0..^ ( N  +  M ) )  /\  -.  x  e.  ( 0..^ N ) ) )
22 nn0z 11400 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  N  e.  ZZ )
23 nn0z 11400 . . . . . . . . . . . . 13  |-  ( M  e.  NN0  ->  M  e.  ZZ )
2422, 23anim12i 590 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  M  e.  NN0 )  -> 
( N  e.  ZZ  /\  M  e.  ZZ ) )
2524ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  M  e.  NN0 )  /\  x  e.  ( 0..^ ( N  +  M ) ) )  /\  -.  x  e.  ( 0..^ N ) )  ->  ( N  e.  ZZ  /\  M  e.  ZZ ) )
26 fzocatel 12531 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( 0..^ ( N  +  M ) )  /\  -.  x  e.  (
0..^ N ) )  /\  ( N  e.  ZZ  /\  M  e.  ZZ ) )  -> 
( x  -  N
)  e.  ( 0..^ M ) )
2721, 25, 26syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  M  e.  NN0 )  /\  x  e.  ( 0..^ ( N  +  M ) ) )  /\  -.  x  e.  ( 0..^ N ) )  ->  ( x  -  N )  e.  ( 0..^ M ) )
2827exp31 630 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  M  e.  NN0 )  -> 
( x  e.  ( 0..^ ( N  +  M ) )  -> 
( -.  x  e.  ( 0..^ N )  ->  ( x  -  N )  e.  ( 0..^ M ) ) ) )
29283adant1 1079 . . . . . . . 8  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  M  e.  NN0 )  ->  (
x  e.  ( 0..^ ( N  +  M
) )  ->  ( -.  x  e.  (
0..^ N )  -> 
( x  -  N
)  e.  ( 0..^ M ) ) ) )
30 oveq12 6659 . . . . . . . . . . 11  |-  ( ( ( # `  ( S repeatS  N ) )  =  N  /\  ( # `  ( S repeatS  M )
)  =  M )  ->  ( ( # `  ( S repeatS  N )
)  +  ( # `  ( S repeatS  M )
) )  =  ( N  +  M ) )
3130oveq2d 6666 . . . . . . . . . 10  |-  ( ( ( # `  ( S repeatS  N ) )  =  N  /\  ( # `  ( S repeatS  M )
)  =  M )  ->  ( 0..^ ( ( # `  ( S repeatS  N ) )  +  ( # `  ( S repeatS  M ) ) ) )  =  ( 0..^ ( N  +  M
) ) )
3231eleq2d 2687 . . . . . . . . 9  |-  ( ( ( # `  ( S repeatS  N ) )  =  N  /\  ( # `  ( S repeatS  M )
)  =  M )  ->  ( x  e.  ( 0..^ ( (
# `  ( S repeatS  N ) )  +  (
# `  ( S repeatS  M ) ) ) )  <-> 
x  e.  ( 0..^ ( N  +  M
) ) ) )
33 oveq2 6658 . . . . . . . . . . . . 13  |-  ( (
# `  ( S repeatS  N ) )  =  N  ->  ( 0..^ (
# `  ( S repeatS  N ) ) )  =  ( 0..^ N ) )
3433eleq2d 2687 . . . . . . . . . . . 12  |-  ( (
# `  ( S repeatS  N ) )  =  N  ->  ( x  e.  ( 0..^ ( # `  ( S repeatS  N )
) )  <->  x  e.  ( 0..^ N ) ) )
3534notbid 308 . . . . . . . . . . 11  |-  ( (
# `  ( S repeatS  N ) )  =  N  ->  ( -.  x  e.  ( 0..^ ( # `  ( S repeatS  N )
) )  <->  -.  x  e.  ( 0..^ N ) ) )
3635adantr 481 . . . . . . . . . 10  |-  ( ( ( # `  ( S repeatS  N ) )  =  N  /\  ( # `  ( S repeatS  M )
)  =  M )  ->  ( -.  x  e.  ( 0..^ ( # `  ( S repeatS  N )
) )  <->  -.  x  e.  ( 0..^ N ) ) )
37 oveq2 6658 . . . . . . . . . . . 12  |-  ( (
# `  ( S repeatS  N ) )  =  N  ->  ( x  -  ( # `  ( S repeatS  N ) ) )  =  ( x  -  N ) )
3837eleq1d 2686 . . . . . . . . . . 11  |-  ( (
# `  ( S repeatS  N ) )  =  N  ->  ( ( x  -  ( # `  ( S repeatS  N ) ) )  e.  ( 0..^ M )  <->  ( x  -  N )  e.  ( 0..^ M ) ) )
3938adantr 481 . . . . . . . . . 10  |-  ( ( ( # `  ( S repeatS  N ) )  =  N  /\  ( # `  ( S repeatS  M )
)  =  M )  ->  ( ( x  -  ( # `  ( S repeatS  N ) ) )  e.  ( 0..^ M )  <->  ( x  -  N )  e.  ( 0..^ M ) ) )
4036, 39imbi12d 334 . . . . . . . . 9  |-  ( ( ( # `  ( S repeatS  N ) )  =  N  /\  ( # `  ( S repeatS  M )
)  =  M )  ->  ( ( -.  x  e.  ( 0..^ ( # `  ( S repeatS  N ) ) )  ->  ( x  -  ( # `  ( S repeatS  N ) ) )  e.  ( 0..^ M ) )  <->  ( -.  x  e.  ( 0..^ N )  ->  (
x  -  N )  e.  ( 0..^ M ) ) ) )
4132, 40imbi12d 334 . . . . . . . 8  |-  ( ( ( # `  ( S repeatS  N ) )  =  N  /\  ( # `  ( S repeatS  M )
)  =  M )  ->  ( ( x  e.  ( 0..^ ( ( # `  ( S repeatS  N ) )  +  ( # `  ( S repeatS  M ) ) ) )  ->  ( -.  x  e.  ( 0..^ ( # `  ( S repeatS  N ) ) )  ->  ( x  -  ( # `  ( S repeatS  N ) ) )  e.  ( 0..^ M ) ) )  <->  ( x  e.  ( 0..^ ( N  +  M ) )  ->  ( -.  x  e.  ( 0..^ N )  ->  ( x  -  N )  e.  ( 0..^ M ) ) ) ) )
4229, 41syl5ibr 236 . . . . . . 7  |-  ( ( ( # `  ( S repeatS  N ) )  =  N  /\  ( # `  ( S repeatS  M )
)  =  M )  ->  ( ( S  e.  V  /\  N  e.  NN0  /\  M  e. 
NN0 )  ->  (
x  e.  ( 0..^ ( ( # `  ( S repeatS  N ) )  +  ( # `  ( S repeatS  M ) ) ) )  ->  ( -.  x  e.  ( 0..^ ( # `  ( S repeatS  N ) ) )  ->  ( x  -  ( # `  ( S repeatS  N ) ) )  e.  ( 0..^ M ) ) ) ) )
4319, 42mpcom 38 . . . . . 6  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  M  e.  NN0 )  ->  (
x  e.  ( 0..^ ( ( # `  ( S repeatS  N ) )  +  ( # `  ( S repeatS  M ) ) ) )  ->  ( -.  x  e.  ( 0..^ ( # `  ( S repeatS  N ) ) )  ->  ( x  -  ( # `  ( S repeatS  N ) ) )  e.  ( 0..^ M ) ) ) )
4443imp31 448 . . . . 5  |-  ( ( ( ( S  e.  V  /\  N  e. 
NN0  /\  M  e.  NN0 )  /\  x  e.  ( 0..^ ( (
# `  ( S repeatS  N ) )  +  (
# `  ( S repeatS  M ) ) ) ) )  /\  -.  x  e.  ( 0..^ ( # `  ( S repeatS  N )
) ) )  -> 
( x  -  ( # `
 ( S repeatS  N
) ) )  e.  ( 0..^ M ) )
45 repswsymb 13521 . . . . 5  |-  ( ( S  e.  V  /\  M  e.  NN0  /\  (
x  -  ( # `  ( S repeatS  N )
) )  e.  ( 0..^ M ) )  ->  ( ( S repeatS  M ) `  (
x  -  ( # `  ( S repeatS  N )
) ) )  =  S )
4617, 18, 44, 45syl3anc 1326 . . . 4  |-  ( ( ( ( S  e.  V  /\  N  e. 
NN0  /\  M  e.  NN0 )  /\  x  e.  ( 0..^ ( (
# `  ( S repeatS  N ) )  +  (
# `  ( S repeatS  M ) ) ) ) )  /\  -.  x  e.  ( 0..^ ( # `  ( S repeatS  N )
) ) )  -> 
( ( S repeatS  M
) `  ( x  -  ( # `  ( S repeatS  N ) ) ) )  =  S )
4716, 46ifeqda 4121 . . 3  |-  ( ( ( S  e.  V  /\  N  e.  NN0  /\  M  e.  NN0 )  /\  x  e.  (
0..^ ( ( # `  ( S repeatS  N )
)  +  ( # `  ( S repeatS  M )
) ) ) )  ->  if ( x  e.  ( 0..^ (
# `  ( S repeatS  N ) ) ) ,  ( ( S repeatS  N
) `  x ) ,  ( ( S repeatS  M ) `  (
x  -  ( # `  ( S repeatS  N )
) ) ) )  =  S )
486, 47mpteq12dva 4732 . 2  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  M  e.  NN0 )  ->  (
x  e.  ( 0..^ ( ( # `  ( S repeatS  N ) )  +  ( # `  ( S repeatS  M ) ) ) )  |->  if ( x  e.  ( 0..^ (
# `  ( S repeatS  N ) ) ) ,  ( ( S repeatS  N
) `  x ) ,  ( ( S repeatS  M ) `  (
x  -  ( # `  ( S repeatS  N )
) ) ) ) )  =  ( x  e.  ( 0..^ ( N  +  M ) )  |->  S ) )
49 ovex 6678 . . . 4  |-  ( S repeatS  N )  e.  _V
50 ovex 6678 . . . 4  |-  ( S repeatS  M )  e.  _V
5149, 50pm3.2i 471 . . 3  |-  ( ( S repeatS  N )  e.  _V  /\  ( S repeatS  M )  e.  _V )
52 ccatfval 13358 . . 3  |-  ( ( ( S repeatS  N )  e.  _V  /\  ( S repeatS  M )  e.  _V )  ->  ( ( S repeatS  N ) ++  ( S repeatS  M ) )  =  ( x  e.  ( 0..^ ( ( # `  ( S repeatS  N ) )  +  ( # `  ( S repeatS  M ) ) ) )  |->  if ( x  e.  ( 0..^ (
# `  ( S repeatS  N ) ) ) ,  ( ( S repeatS  N
) `  x ) ,  ( ( S repeatS  M ) `  (
x  -  ( # `  ( S repeatS  N )
) ) ) ) ) )
5351, 52mp1i 13 . 2  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  M  e.  NN0 )  ->  (
( S repeatS  N ) ++  ( S repeatS  M ) )  =  ( x  e.  ( 0..^ ( (
# `  ( S repeatS  N ) )  +  (
# `  ( S repeatS  M ) ) ) ) 
|->  if ( x  e.  ( 0..^ ( # `  ( S repeatS  N )
) ) ,  ( ( S repeatS  N ) `  x ) ,  ( ( S repeatS  M ) `  ( x  -  ( # `
 ( S repeatS  N
) ) ) ) ) ) )
54 nn0addcl 11328 . . . 4  |-  ( ( N  e.  NN0  /\  M  e.  NN0 )  -> 
( N  +  M
)  e.  NN0 )
55543adant1 1079 . . 3  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  M  e.  NN0 )  ->  ( N  +  M )  e.  NN0 )
56 reps 13517 . . 3  |-  ( ( S  e.  V  /\  ( N  +  M
)  e.  NN0 )  ->  ( S repeatS  ( N  +  M ) )  =  ( x  e.  ( 0..^ ( N  +  M ) )  |->  S ) )
577, 55, 56syl2anc 693 . 2  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  M  e.  NN0 )  ->  ( S repeatS  ( N  +  M
) )  =  ( x  e.  ( 0..^ ( N  +  M
) )  |->  S ) )
5848, 53, 573eqtr4d 2666 1  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  M  e.  NN0 )  ->  (
( S repeatS  N ) ++  ( S repeatS  M ) )  =  ( S repeatS  ( N  +  M )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   ifcif 4086    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   0cc0 9936    + caddc 9939    - cmin 10266   NN0cn0 11292   ZZcz 11377  ..^cfzo 12465   #chash 13117   ++ cconcat 13293   repeatS creps 13298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-concat 13301  df-reps 13306
This theorem is referenced by:  repswcshw  13558  repsw2  13693  repsw3  13694
  Copyright terms: Public domain W3C validator