MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfval2 Structured version   Visualization version   Unicode version

Theorem resfval2 16553
Description: Value of the functor restriction operator. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resfval.c  |-  ( ph  ->  F  e.  V )
resfval.d  |-  ( ph  ->  H  e.  W )
resfval2.g  |-  ( ph  ->  G  e.  X )
resfval2.d  |-  ( ph  ->  H  Fn  ( S  X.  S ) )
Assertion
Ref Expression
resfval2  |-  ( ph  ->  ( <. F ,  G >. 
|`f 
H )  =  <. ( F  |`  S ) ,  ( x  e.  S ,  y  e.  S  |->  ( ( x G y )  |`  ( x H y ) ) ) >.
)
Distinct variable groups:    x, F    x, y, G    x, H, y    ph, x    x, S, y
Allowed substitution hints:    ph( y)    F( y)    V( x, y)    W( x, y)    X( x, y)

Proof of Theorem resfval2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 opex 4932 . . . 4  |-  <. F ,  G >.  e.  _V
21a1i 11 . . 3  |-  ( ph  -> 
<. F ,  G >.  e. 
_V )
3 resfval.d . . 3  |-  ( ph  ->  H  e.  W )
42, 3resfval 16552 . 2  |-  ( ph  ->  ( <. F ,  G >. 
|`f 
H )  =  <. ( ( 1st `  <. F ,  G >. )  |` 
dom  dom  H ) ,  ( z  e.  dom  H 
|->  ( ( ( 2nd `  <. F ,  G >. ) `  z )  |`  ( H `  z
) ) ) >.
)
5 resfval.c . . . . 5  |-  ( ph  ->  F  e.  V )
6 resfval2.g . . . . 5  |-  ( ph  ->  G  e.  X )
7 op1stg 7180 . . . . 5  |-  ( ( F  e.  V  /\  G  e.  X )  ->  ( 1st `  <. F ,  G >. )  =  F )
85, 6, 7syl2anc 693 . . . 4  |-  ( ph  ->  ( 1st `  <. F ,  G >. )  =  F )
9 resfval2.d . . . . . . 7  |-  ( ph  ->  H  Fn  ( S  X.  S ) )
10 fndm 5990 . . . . . . 7  |-  ( H  Fn  ( S  X.  S )  ->  dom  H  =  ( S  X.  S ) )
119, 10syl 17 . . . . . 6  |-  ( ph  ->  dom  H  =  ( S  X.  S ) )
1211dmeqd 5326 . . . . 5  |-  ( ph  ->  dom  dom  H  =  dom  ( S  X.  S
) )
13 dmxpid 5345 . . . . 5  |-  dom  ( S  X.  S )  =  S
1412, 13syl6eq 2672 . . . 4  |-  ( ph  ->  dom  dom  H  =  S )
158, 14reseq12d 5397 . . 3  |-  ( ph  ->  ( ( 1st `  <. F ,  G >. )  |` 
dom  dom  H )  =  ( F  |`  S ) )
16 op2ndg 7181 . . . . . . . 8  |-  ( ( F  e.  V  /\  G  e.  X )  ->  ( 2nd `  <. F ,  G >. )  =  G )
175, 6, 16syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( 2nd `  <. F ,  G >. )  =  G )
1817fveq1d 6193 . . . . . 6  |-  ( ph  ->  ( ( 2nd `  <. F ,  G >. ) `  z )  =  ( G `  z ) )
1918reseq1d 5395 . . . . 5  |-  ( ph  ->  ( ( ( 2nd `  <. F ,  G >. ) `  z )  |`  ( H `  z
) )  =  ( ( G `  z
)  |`  ( H `  z ) ) )
2011, 19mpteq12dv 4733 . . . 4  |-  ( ph  ->  ( z  e.  dom  H 
|->  ( ( ( 2nd `  <. F ,  G >. ) `  z )  |`  ( H `  z
) ) )  =  ( z  e.  ( S  X.  S ) 
|->  ( ( G `  z )  |`  ( H `  z )
) ) )
21 fveq2 6191 . . . . . . 7  |-  ( z  =  <. x ,  y
>.  ->  ( G `  z )  =  ( G `  <. x ,  y >. )
)
22 df-ov 6653 . . . . . . 7  |-  ( x G y )  =  ( G `  <. x ,  y >. )
2321, 22syl6eqr 2674 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  ( G `  z )  =  ( x G y ) )
24 fveq2 6191 . . . . . . 7  |-  ( z  =  <. x ,  y
>.  ->  ( H `  z )  =  ( H `  <. x ,  y >. )
)
25 df-ov 6653 . . . . . . 7  |-  ( x H y )  =  ( H `  <. x ,  y >. )
2624, 25syl6eqr 2674 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  ( H `  z )  =  ( x H y ) )
2723, 26reseq12d 5397 . . . . 5  |-  ( z  =  <. x ,  y
>.  ->  ( ( G `
 z )  |`  ( H `  z ) )  =  ( ( x G y )  |`  ( x H y ) ) )
2827mpt2mpt 6752 . . . 4  |-  ( z  e.  ( S  X.  S )  |->  ( ( G `  z )  |`  ( H `  z
) ) )  =  ( x  e.  S ,  y  e.  S  |->  ( ( x G y )  |`  (
x H y ) ) )
2920, 28syl6eq 2672 . . 3  |-  ( ph  ->  ( z  e.  dom  H 
|->  ( ( ( 2nd `  <. F ,  G >. ) `  z )  |`  ( H `  z
) ) )  =  ( x  e.  S ,  y  e.  S  |->  ( ( x G y )  |`  (
x H y ) ) ) )
3015, 29opeq12d 4410 . 2  |-  ( ph  -> 
<. ( ( 1st `  <. F ,  G >. )  |` 
dom  dom  H ) ,  ( z  e.  dom  H 
|->  ( ( ( 2nd `  <. F ,  G >. ) `  z )  |`  ( H `  z
) ) ) >.  =  <. ( F  |`  S ) ,  ( x  e.  S , 
y  e.  S  |->  ( ( x G y )  |`  ( x H y ) ) ) >. )
314, 30eqtrd 2656 1  |-  ( ph  ->  ( <. F ,  G >. 
|`f 
H )  =  <. ( F  |`  S ) ,  ( x  e.  S ,  y  e.  S  |->  ( ( x G y )  |`  ( x H y ) ) ) >.
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183    |-> cmpt 4729    X. cxp 5112   dom cdm 5114    |` cres 5116    Fn wfn 5883   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167    |`f cresf 16517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-resf 16521
This theorem is referenced by:  funcrngcsetc  41998  funcringcsetc  42035
  Copyright terms: Public domain W3C validator