| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqbidva | Structured version Visualization version Unicode version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.) |
| Ref | Expression |
|---|---|
| raleqbidva.1 |
|
| raleqbidva.2 |
|
| Ref | Expression |
|---|---|
| rexeqbidva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidva.2 |
. . 3
| |
| 2 | 1 | rexbidva 3049 |
. 2
|
| 3 | raleqbidva.1 |
. . 3
| |
| 4 | 3 | rexeqdv 3145 |
. 2
|
| 5 | 2, 4 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 |
| This theorem is referenced by: catpropd 16369 istrkgb 25354 istrkgcb 25355 istrkge 25356 isperp 25607 perpcom 25608 eengtrkg 25865 eengtrkge 25866 afsval 30749 matunitlindflem2 33406 |
| Copyright terms: Public domain | W3C validator |