MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cstucnd Structured version   Visualization version   Unicode version

Theorem cstucnd 22088
Description: A constant function is uniformly continuous. Deduction form. Example 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 16-Nov-2017.)
Hypotheses
Ref Expression
cstucnd.1  |-  ( ph  ->  U  e.  (UnifOn `  X ) )
cstucnd.2  |-  ( ph  ->  V  e.  (UnifOn `  Y ) )
cstucnd.3  |-  ( ph  ->  A  e.  Y )
Assertion
Ref Expression
cstucnd  |-  ( ph  ->  ( X  X.  { A } )  e.  ( U Cnu V ) )

Proof of Theorem cstucnd
Dummy variables  s 
r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cstucnd.3 . . 3  |-  ( ph  ->  A  e.  Y )
2 fconst6g 6094 . . 3  |-  ( A  e.  Y  ->  ( X  X.  { A }
) : X --> Y )
31, 2syl 17 . 2  |-  ( ph  ->  ( X  X.  { A } ) : X --> Y )
4 cstucnd.1 . . . . . 6  |-  ( ph  ->  U  e.  (UnifOn `  X ) )
54adantr 481 . . . . 5  |-  ( (
ph  /\  s  e.  V )  ->  U  e.  (UnifOn `  X )
)
6 ustne0 22017 . . . . 5  |-  ( U  e.  (UnifOn `  X
)  ->  U  =/=  (/) )
75, 6syl 17 . . . 4  |-  ( (
ph  /\  s  e.  V )  ->  U  =/=  (/) )
8 cstucnd.2 . . . . . . . . . 10  |-  ( ph  ->  V  e.  (UnifOn `  Y ) )
98ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  e.  V )  /\  r  e.  U
)  /\  ( x  e.  X  /\  y  e.  X ) )  ->  V  e.  (UnifOn `  Y
) )
10 simpllr 799 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  e.  V )  /\  r  e.  U
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
s  e.  V )
111ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  e.  V )  /\  r  e.  U
)  /\  ( x  e.  X  /\  y  e.  X ) )  ->  A  e.  Y )
12 ustref 22022 . . . . . . . . 9  |-  ( ( V  e.  (UnifOn `  Y )  /\  s  e.  V  /\  A  e.  Y )  ->  A
s A )
139, 10, 11, 12syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e.  V )  /\  r  e.  U
)  /\  ( x  e.  X  /\  y  e.  X ) )  ->  A s A )
14 simprl 794 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  e.  V )  /\  r  e.  U
)  /\  ( x  e.  X  /\  y  e.  X ) )  ->  x  e.  X )
15 fvconst2g 6467 . . . . . . . . 9  |-  ( ( A  e.  Y  /\  x  e.  X )  ->  ( ( X  X.  { A } ) `  x )  =  A )
1611, 14, 15syl2anc 693 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e.  V )  /\  r  e.  U
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( X  X.  { A } ) `  x )  =  A )
17 simprr 796 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  e.  V )  /\  r  e.  U
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
y  e.  X )
18 fvconst2g 6467 . . . . . . . . 9  |-  ( ( A  e.  Y  /\  y  e.  X )  ->  ( ( X  X.  { A } ) `  y )  =  A )
1911, 17, 18syl2anc 693 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e.  V )  /\  r  e.  U
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( X  X.  { A } ) `  y )  =  A )
2013, 16, 193brtr4d 4685 . . . . . . 7  |-  ( ( ( ( ph  /\  s  e.  V )  /\  r  e.  U
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( X  X.  { A } ) `  x ) s ( ( X  X.  { A } ) `  y
) )
2120a1d 25 . . . . . 6  |-  ( ( ( ( ph  /\  s  e.  V )  /\  r  e.  U
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x r y  ->  ( ( X  X.  { A }
) `  x )
s ( ( X  X.  { A }
) `  y )
) )
2221ralrimivva 2971 . . . . 5  |-  ( ( ( ph  /\  s  e.  V )  /\  r  e.  U )  ->  A. x  e.  X  A. y  e.  X  ( x
r y  ->  (
( X  X.  { A } ) `  x
) s ( ( X  X.  { A } ) `  y
) ) )
2322reximdva0 3933 . . . 4  |-  ( ( ( ph  /\  s  e.  V )  /\  U  =/=  (/) )  ->  E. r  e.  U  A. x  e.  X  A. y  e.  X  ( x
r y  ->  (
( X  X.  { A } ) `  x
) s ( ( X  X.  { A } ) `  y
) ) )
247, 23mpdan 702 . . 3  |-  ( (
ph  /\  s  e.  V )  ->  E. r  e.  U  A. x  e.  X  A. y  e.  X  ( x
r y  ->  (
( X  X.  { A } ) `  x
) s ( ( X  X.  { A } ) `  y
) ) )
2524ralrimiva 2966 . 2  |-  ( ph  ->  A. s  e.  V  E. r  e.  U  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( ( X  X.  { A }
) `  x )
s ( ( X  X.  { A }
) `  y )
) )
26 isucn 22082 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  (UnifOn `  Y )
)  ->  ( ( X  X.  { A }
)  e.  ( U Cnu V )  <->  ( ( X  X.  { A }
) : X --> Y  /\  A. s  e.  V  E. r  e.  U  A. x  e.  X  A. y  e.  X  (
x r y  -> 
( ( X  X.  { A } ) `  x ) s ( ( X  X.  { A } ) `  y
) ) ) ) )
274, 8, 26syl2anc 693 . 2  |-  ( ph  ->  ( ( X  X.  { A } )  e.  ( U Cnu V )  <->  ( ( X  X.  { A }
) : X --> Y  /\  A. s  e.  V  E. r  e.  U  A. x  e.  X  A. y  e.  X  (
x r y  -> 
( ( X  X.  { A } ) `  x ) s ( ( X  X.  { A } ) `  y
) ) ) ) )
283, 25, 27mpbir2and 957 1  |-  ( ph  ->  ( X  X.  { A } )  e.  ( U Cnu V ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   (/)c0 3915   {csn 4177   class class class wbr 4653    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650  UnifOncust 22003   Cnucucn 22079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-ust 22004  df-ucn 22080
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator