| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cstucnd | Structured version Visualization version Unicode version | ||
| Description: A constant function is uniformly continuous. Deduction form. Example 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
| Ref | Expression |
|---|---|
| cstucnd.1 |
|
| cstucnd.2 |
|
| cstucnd.3 |
|
| Ref | Expression |
|---|---|
| cstucnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cstucnd.3 |
. . 3
| |
| 2 | fconst6g 6094 |
. . 3
| |
| 3 | 1, 2 | syl 17 |
. 2
|
| 4 | cstucnd.1 |
. . . . . 6
| |
| 5 | 4 | adantr 481 |
. . . . 5
|
| 6 | ustne0 22017 |
. . . . 5
| |
| 7 | 5, 6 | syl 17 |
. . . 4
|
| 8 | cstucnd.2 |
. . . . . . . . . 10
| |
| 9 | 8 | ad3antrrr 766 |
. . . . . . . . 9
|
| 10 | simpllr 799 |
. . . . . . . . 9
| |
| 11 | 1 | ad3antrrr 766 |
. . . . . . . . 9
|
| 12 | ustref 22022 |
. . . . . . . . 9
| |
| 13 | 9, 10, 11, 12 | syl3anc 1326 |
. . . . . . . 8
|
| 14 | simprl 794 |
. . . . . . . . 9
| |
| 15 | fvconst2g 6467 |
. . . . . . . . 9
| |
| 16 | 11, 14, 15 | syl2anc 693 |
. . . . . . . 8
|
| 17 | simprr 796 |
. . . . . . . . 9
| |
| 18 | fvconst2g 6467 |
. . . . . . . . 9
| |
| 19 | 11, 17, 18 | syl2anc 693 |
. . . . . . . 8
|
| 20 | 13, 16, 19 | 3brtr4d 4685 |
. . . . . . 7
|
| 21 | 20 | a1d 25 |
. . . . . 6
|
| 22 | 21 | ralrimivva 2971 |
. . . . 5
|
| 23 | 22 | reximdva0 3933 |
. . . 4
|
| 24 | 7, 23 | mpdan 702 |
. . 3
|
| 25 | 24 | ralrimiva 2966 |
. 2
|
| 26 | isucn 22082 |
. . 3
| |
| 27 | 4, 8, 26 | syl2anc 693 |
. 2
|
| 28 | 3, 25, 27 | mpbir2and 957 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-ust 22004 df-ucn 22080 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |