MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximdvva Structured version   Visualization version   Unicode version

Theorem reximdvva 3019
Description: Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by AV, 5-Jan-2022.)
Hypothesis
Ref Expression
reximdvva.1  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( ps  ->  ch ) )
Assertion
Ref Expression
reximdvva  |-  ( ph  ->  ( E. x  e.  A  E. y  e.  B  ps  ->  E. x  e.  A  E. y  e.  B  ch )
)
Distinct variable groups:    y, A    x, y, ph
Allowed substitution hints:    ps( x, y)    ch( x, y)    A( x)    B( x, y)

Proof of Theorem reximdvva
StepHypRef Expression
1 reximdvva.1 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( ps  ->  ch ) )
21anassrs 680 . . 3  |-  ( ( ( ph  /\  x  e.  A )  /\  y  e.  B )  ->  ( ps  ->  ch ) )
32reximdva 3017 . 2  |-  ( (
ph  /\  x  e.  A )  ->  ( E. y  e.  B  ps  ->  E. y  e.  B  ch ) )
43reximdva 3017 1  |-  ( ph  ->  ( E. x  e.  A  E. y  e.  B  ps  ->  E. x  e.  A  E. y  e.  B  ch )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990   E.wrex 2913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-ral 2917  df-rex 2918
This theorem is referenced by:  lcmgcdlem  15319  lsmelval2  19085  cpmadugsum  20683  axpasch  25821  frgrwopreglem5  27185  frgrwopreglem5ALT  27186  eulerpartlemgvv  30438  cvmlift2lem10  31294  ftc1anclem6  33490
  Copyright terms: Public domain W3C validator