| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximddv2 | Structured version Visualization version Unicode version | ||
| Description: Double deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
| Ref | Expression |
|---|---|
| reximddv2.1 |
|
| reximddv2.2 |
|
| Ref | Expression |
|---|---|
| reximddv2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximddv2.1 |
. . . . 5
| |
| 2 | 1 | ex 450 |
. . . 4
|
| 3 | 2 | reximdva 3017 |
. . 3
|
| 4 | 3 | impr 649 |
. 2
|
| 5 | reximddv2.2 |
. 2
| |
| 6 | 4, 5 | reximddv 3018 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-ral 2917 df-rex 2918 |
| This theorem is referenced by: prmgaplem8 15762 cpmadugsumfi 20682 cpmidg2sum 20685 cayhamlem4 20693 ltgseg 25491 cgraswap 25712 cgracom 25714 cgratr 25715 dfcgra2 25721 xrofsup 29533 prmunb2 38510 |
| Copyright terms: Public domain | W3C validator |