MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpasch Structured version   Visualization version   Unicode version

Theorem axpasch 25821
Description: The inner Pasch axiom. Take a triangle  A C E, a point  D on  A C, and a point  B extending  C E. Then  A E and  D B intersect at some point  x. Axiom A7 of [Schwabhauser] p. 12. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
axpasch  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( ( D  Btwn  <. A ,  C >.  /\  E  Btwn  <. B ,  C >. )  ->  E. x  e.  ( EE `  N
) ( x  Btwn  <. D ,  B >.  /\  x  Btwn  <. E ,  A >. ) ) )
Distinct variable groups:    x, A    x, B    x, C    x, D    x, E    x, N

Proof of Theorem axpasch
Dummy variables  i 
q  r  s  t  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axpaschlem 25820 . . . . . . . . . 10  |-  ( ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  E. r  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) ( q  =  ( ( 1  -  r
)  x.  ( 1  -  t ) )  /\  r  =  ( ( 1  -  q
)  x.  ( 1  -  s ) )  /\  ( ( 1  -  r )  x.  t )  =  ( ( 1  -  q
)  x.  s ) ) )
213ad2ant3 1084 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  (
t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) ) )  ->  E. r  e.  ( 0 [,] 1
) E. q  e.  ( 0 [,] 1
) ( q  =  ( ( 1  -  r )  x.  (
1  -  t ) )  /\  r  =  ( ( 1  -  q )  x.  (
1  -  s ) )  /\  ( ( 1  -  r )  x.  t )  =  ( ( 1  -  q )  x.  s
) ) )
3 simp1 1061 . . . . . . . . . . . . . . . . . . 19  |-  ( ( q  =  ( ( 1  -  r )  x.  ( 1  -  t ) )  /\  r  =  ( (
1  -  q )  x.  ( 1  -  s ) )  /\  ( ( 1  -  r )  x.  t
)  =  ( ( 1  -  q )  x.  s ) )  ->  q  =  ( ( 1  -  r
)  x.  ( 1  -  t ) ) )
43oveq1d 6665 . . . . . . . . . . . . . . . . . 18  |-  ( ( q  =  ( ( 1  -  r )  x.  ( 1  -  t ) )  /\  r  =  ( (
1  -  q )  x.  ( 1  -  s ) )  /\  ( ( 1  -  r )  x.  t
)  =  ( ( 1  -  q )  x.  s ) )  ->  ( q  x.  ( A `  i
) )  =  ( ( ( 1  -  r )  x.  (
1  -  t ) )  x.  ( A `
 i ) ) )
54eqcomd 2628 . . . . . . . . . . . . . . . . 17  |-  ( ( q  =  ( ( 1  -  r )  x.  ( 1  -  t ) )  /\  r  =  ( (
1  -  q )  x.  ( 1  -  s ) )  /\  ( ( 1  -  r )  x.  t
)  =  ( ( 1  -  q )  x.  s ) )  ->  ( ( ( 1  -  r )  x.  ( 1  -  t ) )  x.  ( A `  i
) )  =  ( q  x.  ( A `
 i ) ) )
6 simp2 1062 . . . . . . . . . . . . . . . . . 18  |-  ( ( q  =  ( ( 1  -  r )  x.  ( 1  -  t ) )  /\  r  =  ( (
1  -  q )  x.  ( 1  -  s ) )  /\  ( ( 1  -  r )  x.  t
)  =  ( ( 1  -  q )  x.  s ) )  ->  r  =  ( ( 1  -  q
)  x.  ( 1  -  s ) ) )
76oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( ( q  =  ( ( 1  -  r )  x.  ( 1  -  t ) )  /\  r  =  ( (
1  -  q )  x.  ( 1  -  s ) )  /\  ( ( 1  -  r )  x.  t
)  =  ( ( 1  -  q )  x.  s ) )  ->  ( r  x.  ( B `  i
) )  =  ( ( ( 1  -  q )  x.  (
1  -  s ) )  x.  ( B `
 i ) ) )
85, 7oveq12d 6668 . . . . . . . . . . . . . . . 16  |-  ( ( q  =  ( ( 1  -  r )  x.  ( 1  -  t ) )  /\  r  =  ( (
1  -  q )  x.  ( 1  -  s ) )  /\  ( ( 1  -  r )  x.  t
)  =  ( ( 1  -  q )  x.  s ) )  ->  ( ( ( ( 1  -  r
)  x.  ( 1  -  t ) )  x.  ( A `  i ) )  +  ( r  x.  ( B `  i )
) )  =  ( ( q  x.  ( A `  i )
)  +  ( ( ( 1  -  q
)  x.  ( 1  -  s ) )  x.  ( B `  i ) ) ) )
9 simp3 1063 . . . . . . . . . . . . . . . . 17  |-  ( ( q  =  ( ( 1  -  r )  x.  ( 1  -  t ) )  /\  r  =  ( (
1  -  q )  x.  ( 1  -  s ) )  /\  ( ( 1  -  r )  x.  t
)  =  ( ( 1  -  q )  x.  s ) )  ->  ( ( 1  -  r )  x.  t )  =  ( ( 1  -  q
)  x.  s ) )
109oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( ( q  =  ( ( 1  -  r )  x.  ( 1  -  t ) )  /\  r  =  ( (
1  -  q )  x.  ( 1  -  s ) )  /\  ( ( 1  -  r )  x.  t
)  =  ( ( 1  -  q )  x.  s ) )  ->  ( ( ( 1  -  r )  x.  t )  x.  ( C `  i
) )  =  ( ( ( 1  -  q )  x.  s
)  x.  ( C `
 i ) ) )
118, 10oveq12d 6668 . . . . . . . . . . . . . . 15  |-  ( ( q  =  ( ( 1  -  r )  x.  ( 1  -  t ) )  /\  r  =  ( (
1  -  q )  x.  ( 1  -  s ) )  /\  ( ( 1  -  r )  x.  t
)  =  ( ( 1  -  q )  x.  s ) )  ->  ( ( ( ( ( 1  -  r )  x.  (
1  -  t ) )  x.  ( A `
 i ) )  +  ( r  x.  ( B `  i
) ) )  +  ( ( ( 1  -  r )  x.  t )  x.  ( C `  i )
) )  =  ( ( ( q  x.  ( A `  i
) )  +  ( ( ( 1  -  q )  x.  (
1  -  s ) )  x.  ( B `
 i ) ) )  +  ( ( ( 1  -  q
)  x.  s )  x.  ( C `  i ) ) ) )
12113ad2ant3 1084 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  ->  ( ( ( ( ( 1  -  r )  x.  (
1  -  t ) )  x.  ( A `
 i ) )  +  ( r  x.  ( B `  i
) ) )  +  ( ( ( 1  -  r )  x.  t )  x.  ( C `  i )
) )  =  ( ( ( q  x.  ( A `  i
) )  +  ( ( ( 1  -  q )  x.  (
1  -  s ) )  x.  ( B `
 i ) ) )  +  ( ( ( 1  -  q
)  x.  s )  x.  ( C `  i ) ) ) )
1312adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
( ( ( 1  -  r )  x.  ( 1  -  t
) )  x.  ( A `  i )
)  +  ( r  x.  ( B `  i ) ) )  +  ( ( ( 1  -  r )  x.  t )  x.  ( C `  i
) ) )  =  ( ( ( q  x.  ( A `  i ) )  +  ( ( ( 1  -  q )  x.  ( 1  -  s
) )  x.  ( B `  i )
) )  +  ( ( ( 1  -  q )  x.  s
)  x.  ( C `
 i ) ) ) )
14 1re 10039 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR
15 simpl2l 1114 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  r  e.  ( 0 [,] 1
) )
16 0re 10040 . . . . . . . . . . . . . . . . . . . . . 22  |-  0  e.  RR
1716, 14elicc2i 12239 . . . . . . . . . . . . . . . . . . . . 21  |-  ( r  e.  ( 0 [,] 1 )  <->  ( r  e.  RR  /\  0  <_ 
r  /\  r  <_  1 ) )
1817simp1bi 1076 . . . . . . . . . . . . . . . . . . . 20  |-  ( r  e.  ( 0 [,] 1 )  ->  r  e.  RR )
1915, 18syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  r  e.  RR )
20 resubcl 10345 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  RR  /\  r  e.  RR )  ->  ( 1  -  r
)  e.  RR )
2114, 19, 20sylancr 695 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( 1  -  r )  e.  RR )
2221recnd 10068 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( 1  -  r )  e.  CC )
23 simp13l 1176 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  ->  t  e.  ( 0 [,] 1 ) )
2423adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  t  e.  ( 0 [,] 1
) )
2516, 14elicc2i 12239 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( t  e.  ( 0 [,] 1 )  <->  ( t  e.  RR  /\  0  <_ 
t  /\  t  <_  1 ) )
2625simp1bi 1076 . . . . . . . . . . . . . . . . . . . . 21  |-  ( t  e.  ( 0 [,] 1 )  ->  t  e.  RR )
2724, 26syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  t  e.  RR )
28 resubcl 10345 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  e.  RR  /\  t  e.  RR )  ->  ( 1  -  t
)  e.  RR )
2914, 27, 28sylancr 695 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( 1  -  t )  e.  RR )
30 simp121 1193 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  ->  A  e.  ( EE `  N ) )
31 fveere 25781 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( A `  i )  e.  RR )
3230, 31sylan 488 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( A `  i )  e.  RR )
3329, 32remulcld 10070 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
1  -  t )  x.  ( A `  i ) )  e.  RR )
3433recnd 10068 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
1  -  t )  x.  ( A `  i ) )  e.  CC )
35 simp123 1195 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  ->  C  e.  ( EE `  N ) )
36 fveere 25781 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( C  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( C `  i )  e.  RR )
3735, 36sylan 488 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( C `  i )  e.  RR )
3827, 37remulcld 10070 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( t  x.  ( C `  i
) )  e.  RR )
3938recnd 10068 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( t  x.  ( C `  i
) )  e.  CC )
4022, 34, 39adddid 10064 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) ) )  =  ( ( ( 1  -  r )  x.  ( ( 1  -  t )  x.  ( A `  i )
) )  +  ( ( 1  -  r
)  x.  ( t  x.  ( C `  i ) ) ) ) )
4129recnd 10068 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( 1  -  t )  e.  CC )
4232recnd 10068 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( A `  i )  e.  CC )
4322, 41, 42mulassd 10063 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
( 1  -  r
)  x.  ( 1  -  t ) )  x.  ( A `  i ) )  =  ( ( 1  -  r )  x.  (
( 1  -  t
)  x.  ( A `
 i ) ) ) )
4427recnd 10068 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  t  e.  CC )
45 fveecn 25782 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( C `  i )  e.  CC )
4635, 45sylan 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( C `  i )  e.  CC )
4722, 44, 46mulassd 10063 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
( 1  -  r
)  x.  t )  x.  ( C `  i ) )  =  ( ( 1  -  r )  x.  (
t  x.  ( C `
 i ) ) ) )
4843, 47oveq12d 6668 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
( ( 1  -  r )  x.  (
1  -  t ) )  x.  ( A `
 i ) )  +  ( ( ( 1  -  r )  x.  t )  x.  ( C `  i
) ) )  =  ( ( ( 1  -  r )  x.  ( ( 1  -  t )  x.  ( A `  i )
) )  +  ( ( 1  -  r
)  x.  ( t  x.  ( C `  i ) ) ) ) )
4940, 48eqtr4d 2659 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) ) )  =  ( ( ( ( 1  -  r )  x.  ( 1  -  t ) )  x.  ( A `  i
) )  +  ( ( ( 1  -  r )  x.  t
)  x.  ( C `
 i ) ) ) )
5049oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
( 1  -  r
)  x.  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) ) )  +  ( r  x.  ( B `  i
) ) )  =  ( ( ( ( ( 1  -  r
)  x.  ( 1  -  t ) )  x.  ( A `  i ) )  +  ( ( ( 1  -  r )  x.  t )  x.  ( C `  i )
) )  +  ( r  x.  ( B `
 i ) ) ) )
5121, 29remulcld 10070 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
1  -  r )  x.  ( 1  -  t ) )  e.  RR )
5251, 32remulcld 10070 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
( 1  -  r
)  x.  ( 1  -  t ) )  x.  ( A `  i ) )  e.  RR )
5352recnd 10068 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
( 1  -  r
)  x.  ( 1  -  t ) )  x.  ( A `  i ) )  e.  CC )
5421, 27remulcld 10070 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
1  -  r )  x.  t )  e.  RR )
5554, 37remulcld 10070 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
( 1  -  r
)  x.  t )  x.  ( C `  i ) )  e.  RR )
5655recnd 10068 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
( 1  -  r
)  x.  t )  x.  ( C `  i ) )  e.  CC )
57 simp122 1194 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  ->  B  e.  ( EE `  N ) )
58 fveere 25781 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( B `  i )  e.  RR )
5957, 58sylan 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( B `  i )  e.  RR )
6019, 59remulcld 10070 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( r  x.  ( B `  i
) )  e.  RR )
6160recnd 10068 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( r  x.  ( B `  i
) )  e.  CC )
6253, 56, 61add32d 10263 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
( ( ( 1  -  r )  x.  ( 1  -  t
) )  x.  ( A `  i )
)  +  ( ( ( 1  -  r
)  x.  t )  x.  ( C `  i ) ) )  +  ( r  x.  ( B `  i
) ) )  =  ( ( ( ( ( 1  -  r
)  x.  ( 1  -  t ) )  x.  ( A `  i ) )  +  ( r  x.  ( B `  i )
) )  +  ( ( ( 1  -  r )  x.  t
)  x.  ( C `
 i ) ) ) )
6350, 62eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
( 1  -  r
)  x.  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) ) )  +  ( r  x.  ( B `  i
) ) )  =  ( ( ( ( ( 1  -  r
)  x.  ( 1  -  t ) )  x.  ( A `  i ) )  +  ( r  x.  ( B `  i )
) )  +  ( ( ( 1  -  r )  x.  t
)  x.  ( C `
 i ) ) ) )
64 simpl2r 1115 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  q  e.  ( 0 [,] 1
) )
6516, 14elicc2i 12239 . . . . . . . . . . . . . . . . . . . 20  |-  ( q  e.  ( 0 [,] 1 )  <->  ( q  e.  RR  /\  0  <_ 
q  /\  q  <_  1 ) )
6665simp1bi 1076 . . . . . . . . . . . . . . . . . . 19  |-  ( q  e.  ( 0 [,] 1 )  ->  q  e.  RR )
6764, 66syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  q  e.  RR )
68 resubcl 10345 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  RR  /\  q  e.  RR )  ->  ( 1  -  q
)  e.  RR )
6914, 67, 68sylancr 695 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( 1  -  q )  e.  RR )
70 simp13r 1177 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  ->  s  e.  ( 0 [,] 1 ) )
7170adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  s  e.  ( 0 [,] 1
) )
7216, 14elicc2i 12239 . . . . . . . . . . . . . . . . . . . . 21  |-  ( s  e.  ( 0 [,] 1 )  <->  ( s  e.  RR  /\  0  <_ 
s  /\  s  <_  1 ) )
7372simp1bi 1076 . . . . . . . . . . . . . . . . . . . 20  |-  ( s  e.  ( 0 [,] 1 )  ->  s  e.  RR )
7471, 73syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  s  e.  RR )
75 resubcl 10345 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  RR  /\  s  e.  RR )  ->  ( 1  -  s
)  e.  RR )
7614, 74, 75sylancr 695 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( 1  -  s )  e.  RR )
7776, 59remulcld 10070 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
1  -  s )  x.  ( B `  i ) )  e.  RR )
7869, 77remulcld 10070 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
1  -  q )  x.  ( ( 1  -  s )  x.  ( B `  i
) ) )  e.  RR )
7978recnd 10068 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
1  -  q )  x.  ( ( 1  -  s )  x.  ( B `  i
) ) )  e.  CC )
8074, 37remulcld 10070 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( s  x.  ( C `  i
) )  e.  RR )
8169, 80remulcld 10070 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
1  -  q )  x.  ( s  x.  ( C `  i
) ) )  e.  RR )
8281recnd 10068 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
1  -  q )  x.  ( s  x.  ( C `  i
) ) )  e.  CC )
8367, 32remulcld 10070 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( q  x.  ( A `  i
) )  e.  RR )
8483recnd 10068 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( q  x.  ( A `  i
) )  e.  CC )
8579, 82, 84add32d 10263 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
( ( 1  -  q )  x.  (
( 1  -  s
)  x.  ( B `
 i ) ) )  +  ( ( 1  -  q )  x.  ( s  x.  ( C `  i
) ) ) )  +  ( q  x.  ( A `  i
) ) )  =  ( ( ( ( 1  -  q )  x.  ( ( 1  -  s )  x.  ( B `  i
) ) )  +  ( q  x.  ( A `  i )
) )  +  ( ( 1  -  q
)  x.  ( s  x.  ( C `  i ) ) ) ) )
8669recnd 10068 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( 1  -  q )  e.  CC )
8777recnd 10068 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
1  -  s )  x.  ( B `  i ) )  e.  CC )
8880recnd 10068 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( s  x.  ( C `  i
) )  e.  CC )
8986, 87, 88adddid 10064 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
1  -  q )  x.  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) ) )  =  ( ( ( 1  -  q )  x.  ( ( 1  -  s )  x.  ( B `  i )
) )  +  ( ( 1  -  q
)  x.  ( s  x.  ( C `  i ) ) ) ) )
9089oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
( 1  -  q
)  x.  ( ( ( 1  -  s
)  x.  ( B `
 i ) )  +  ( s  x.  ( C `  i
) ) ) )  +  ( q  x.  ( A `  i
) ) )  =  ( ( ( ( 1  -  q )  x.  ( ( 1  -  s )  x.  ( B `  i
) ) )  +  ( ( 1  -  q )  x.  (
s  x.  ( C `
 i ) ) ) )  +  ( q  x.  ( A `
 i ) ) ) )
9176recnd 10068 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( 1  -  s )  e.  CC )
9259recnd 10068 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( B `  i )  e.  CC )
9386, 91, 92mulassd 10063 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
( 1  -  q
)  x.  ( 1  -  s ) )  x.  ( B `  i ) )  =  ( ( 1  -  q )  x.  (
( 1  -  s
)  x.  ( B `
 i ) ) ) )
9493oveq2d 6666 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
q  x.  ( A `
 i ) )  +  ( ( ( 1  -  q )  x.  ( 1  -  s ) )  x.  ( B `  i
) ) )  =  ( ( q  x.  ( A `  i
) )  +  ( ( 1  -  q
)  x.  ( ( 1  -  s )  x.  ( B `  i ) ) ) ) )
9584, 79, 94comraddd 10250 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
q  x.  ( A `
 i ) )  +  ( ( ( 1  -  q )  x.  ( 1  -  s ) )  x.  ( B `  i
) ) )  =  ( ( ( 1  -  q )  x.  ( ( 1  -  s )  x.  ( B `  i )
) )  +  ( q  x.  ( A `
 i ) ) ) )
9674recnd 10068 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  s  e.  CC )
9786, 96, 46mulassd 10063 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
( 1  -  q
)  x.  s )  x.  ( C `  i ) )  =  ( ( 1  -  q )  x.  (
s  x.  ( C `
 i ) ) ) )
9895, 97oveq12d 6668 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
( q  x.  ( A `  i )
)  +  ( ( ( 1  -  q
)  x.  ( 1  -  s ) )  x.  ( B `  i ) ) )  +  ( ( ( 1  -  q )  x.  s )  x.  ( C `  i
) ) )  =  ( ( ( ( 1  -  q )  x.  ( ( 1  -  s )  x.  ( B `  i
) ) )  +  ( q  x.  ( A `  i )
) )  +  ( ( 1  -  q
)  x.  ( s  x.  ( C `  i ) ) ) ) )
9985, 90, 983eqtr4d 2666 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
( 1  -  q
)  x.  ( ( ( 1  -  s
)  x.  ( B `
 i ) )  +  ( s  x.  ( C `  i
) ) ) )  +  ( q  x.  ( A `  i
) ) )  =  ( ( ( q  x.  ( A `  i ) )  +  ( ( ( 1  -  q )  x.  ( 1  -  s
) )  x.  ( B `  i )
) )  +  ( ( ( 1  -  q )  x.  s
)  x.  ( C `
 i ) ) ) )
10013, 63, 993eqtr4d 2666 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
( 1  -  r
)  x.  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) ) )  +  ( r  x.  ( B `  i
) ) )  =  ( ( ( 1  -  q )  x.  ( ( ( 1  -  s )  x.  ( B `  i
) )  +  ( s  x.  ( C `
 i ) ) ) )  +  ( q  x.  ( A `
 i ) ) ) )
101100ralrimiva 2966 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) )  /\  ( q  =  ( ( 1  -  r )  x.  ( 1  -  t
) )  /\  r  =  ( ( 1  -  q )  x.  ( 1  -  s
) )  /\  (
( 1  -  r
)  x.  t )  =  ( ( 1  -  q )  x.  s ) ) )  ->  A. i  e.  ( 1 ... N ) ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i
) )  +  ( t  x.  ( C `
 i ) ) ) )  +  ( r  x.  ( B `
 i ) ) )  =  ( ( ( 1  -  q
)  x.  ( ( ( 1  -  s
)  x.  ( B `
 i ) )  +  ( s  x.  ( C `  i
) ) ) )  +  ( q  x.  ( A `  i
) ) ) )
1021013expia 1267 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  ->  (
( q  =  ( ( 1  -  r
)  x.  ( 1  -  t ) )  /\  r  =  ( ( 1  -  q
)  x.  ( 1  -  s ) )  /\  ( ( 1  -  r )  x.  t )  =  ( ( 1  -  q
)  x.  s ) )  ->  A. i  e.  ( 1 ... N
) ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) ) )  +  ( r  x.  ( B `  i )
) )  =  ( ( ( 1  -  q )  x.  (
( ( 1  -  s )  x.  ( B `  i )
)  +  ( s  x.  ( C `  i ) ) ) )  +  ( q  x.  ( A `  i ) ) ) ) )
103102reximdvva 3019 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  (
t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) ) )  ->  ( E. r  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) ( q  =  ( ( 1  -  r )  x.  ( 1  -  t ) )  /\  r  =  ( (
1  -  q )  x.  ( 1  -  s ) )  /\  ( ( 1  -  r )  x.  t
)  =  ( ( 1  -  q )  x.  s ) )  ->  E. r  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i
) )  +  ( t  x.  ( C `
 i ) ) ) )  +  ( r  x.  ( B `
 i ) ) )  =  ( ( ( 1  -  q
)  x.  ( ( ( 1  -  s
)  x.  ( B `
 i ) )  +  ( s  x.  ( C `  i
) ) ) )  +  ( q  x.  ( A `  i
) ) ) ) )
1042, 103mpd 15 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  (
t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) ) )  ->  E. r  e.  ( 0 [,] 1
) E. q  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) ) )  +  ( r  x.  ( B `  i )
) )  =  ( ( ( 1  -  q )  x.  (
( ( 1  -  s )  x.  ( B `  i )
)  +  ( s  x.  ( C `  i ) ) ) )  +  ( q  x.  ( A `  i ) ) ) )
105 simplrl 800 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  k  e.  ( 1 ... N
) )  ->  r  e.  ( 0 [,] 1
) )
106105, 18syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  k  e.  ( 1 ... N
) )  ->  r  e.  RR )
10714, 106, 20sylancr 695 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  k  e.  ( 1 ... N
) )  ->  (
1  -  r )  e.  RR )
108 simpl3l 1116 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  ->  t  e.  ( 0 [,] 1
) )
109108adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  k  e.  ( 1 ... N
) )  ->  t  e.  ( 0 [,] 1
) )
110109, 26syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  k  e.  ( 1 ... N
) )  ->  t  e.  RR )
11114, 110, 28sylancr 695 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  k  e.  ( 1 ... N
) )  ->  (
1  -  t )  e.  RR )
112 simpl21 1139 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  ->  A  e.  ( EE `  N
) )
113 fveere 25781 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  ( EE
`  N )  /\  k  e.  ( 1 ... N ) )  ->  ( A `  k )  e.  RR )
114112, 113sylan 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  k  e.  ( 1 ... N
) )  ->  ( A `  k )  e.  RR )
115111, 114remulcld 10070 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  k  e.  ( 1 ... N
) )  ->  (
( 1  -  t
)  x.  ( A `
 k ) )  e.  RR )
116 simpl23 1141 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  ->  C  e.  ( EE `  N
) )
117 fveere 25781 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  e.  ( EE
`  N )  /\  k  e.  ( 1 ... N ) )  ->  ( C `  k )  e.  RR )
118116, 117sylan 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  k  e.  ( 1 ... N
) )  ->  ( C `  k )  e.  RR )
119110, 118remulcld 10070 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  k  e.  ( 1 ... N
) )  ->  (
t  x.  ( C `
 k ) )  e.  RR )
120115, 119readdcld 10069 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  k  e.  ( 1 ... N
) )  ->  (
( ( 1  -  t )  x.  ( A `  k )
)  +  ( t  x.  ( C `  k ) ) )  e.  RR )
121107, 120remulcld 10070 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  k  e.  ( 1 ... N
) )  ->  (
( 1  -  r
)  x.  ( ( ( 1  -  t
)  x.  ( A `
 k ) )  +  ( t  x.  ( C `  k
) ) ) )  e.  RR )
122 simpl22 1140 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  ->  B  e.  ( EE `  N
) )
123 fveere 25781 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  ( EE
`  N )  /\  k  e.  ( 1 ... N ) )  ->  ( B `  k )  e.  RR )
124122, 123sylan 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  k  e.  ( 1 ... N
) )  ->  ( B `  k )  e.  RR )
125106, 124remulcld 10070 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  k  e.  ( 1 ... N
) )  ->  (
r  x.  ( B `
 k ) )  e.  RR )
126121, 125readdcld 10069 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  k  e.  ( 1 ... N
) )  ->  (
( ( 1  -  r )  x.  (
( ( 1  -  t )  x.  ( A `  k )
)  +  ( t  x.  ( C `  k ) ) ) )  +  ( r  x.  ( B `  k ) ) )  e.  RR )
127126ralrimiva 2966 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  ( r  e.  ( 0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  ->  A. k  e.  ( 1 ... N
) ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  k ) )  +  ( t  x.  ( C `  k )
) ) )  +  ( r  x.  ( B `  k )
) )  e.  RR )
128127anassrs 680 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  r  e.  ( 0 [,] 1 ) )  /\  q  e.  ( 0 [,] 1 ) )  ->  A. k  e.  ( 1 ... N
) ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  k ) )  +  ( t  x.  ( C `  k )
) ) )  +  ( r  x.  ( B `  k )
) )  e.  RR )
129 simpll1 1100 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  r  e.  ( 0 [,] 1 ) )  /\  q  e.  ( 0 [,] 1 ) )  ->  N  e.  NN )
130 mptelee 25775 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  k
) )  +  ( t  x.  ( C `
 k ) ) ) )  +  ( r  x.  ( B `
 k ) ) ) )  e.  ( EE `  N )  <->  A. k  e.  (
1 ... N ) ( ( ( 1  -  r )  x.  (
( ( 1  -  t )  x.  ( A `  k )
)  +  ( t  x.  ( C `  k ) ) ) )  +  ( r  x.  ( B `  k ) ) )  e.  RR ) )
131129, 130syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  r  e.  ( 0 [,] 1 ) )  /\  q  e.  ( 0 [,] 1 ) )  ->  ( (
k  e.  ( 1 ... N )  |->  ( ( ( 1  -  r )  x.  (
( ( 1  -  t )  x.  ( A `  k )
)  +  ( t  x.  ( C `  k ) ) ) )  +  ( r  x.  ( B `  k ) ) ) )  e.  ( EE
`  N )  <->  A. k  e.  ( 1 ... N
) ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  k ) )  +  ( t  x.  ( C `  k )
) ) )  +  ( r  x.  ( B `  k )
) )  e.  RR ) )
132128, 131mpbird 247 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  r  e.  ( 0 [,] 1 ) )  /\  q  e.  ( 0 [,] 1 ) )  ->  ( k  e.  ( 1 ... N
)  |->  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  k ) )  +  ( t  x.  ( C `  k )
) ) )  +  ( r  x.  ( B `  k )
) ) )  e.  ( EE `  N
) )
133 fveq1 6190 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  k ) )  +  ( t  x.  ( C `  k )
) ) )  +  ( r  x.  ( B `  k )
) ) )  -> 
( x `  i
)  =  ( ( k  e.  ( 1 ... N )  |->  ( ( ( 1  -  r )  x.  (
( ( 1  -  t )  x.  ( A `  k )
)  +  ( t  x.  ( C `  k ) ) ) )  +  ( r  x.  ( B `  k ) ) ) ) `  i ) )
134 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  =  i  ->  ( A `  k )  =  ( A `  i ) )
135134oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  i  ->  (
( 1  -  t
)  x.  ( A `
 k ) )  =  ( ( 1  -  t )  x.  ( A `  i
) ) )
136 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  =  i  ->  ( C `  k )  =  ( C `  i ) )
137136oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  i  ->  (
t  x.  ( C `
 k ) )  =  ( t  x.  ( C `  i
) ) )
138135, 137oveq12d 6668 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  i  ->  (
( ( 1  -  t )  x.  ( A `  k )
)  +  ( t  x.  ( C `  k ) ) )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) ) )
139138oveq2d 6666 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  i  ->  (
( 1  -  r
)  x.  ( ( ( 1  -  t
)  x.  ( A `
 k ) )  +  ( t  x.  ( C `  k
) ) ) )  =  ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i
) )  +  ( t  x.  ( C `
 i ) ) ) ) )
140 fveq2 6191 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  i  ->  ( B `  k )  =  ( B `  i ) )
141140oveq2d 6666 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  i  ->  (
r  x.  ( B `
 k ) )  =  ( r  x.  ( B `  i
) ) )
142139, 141oveq12d 6668 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  i  ->  (
( ( 1  -  r )  x.  (
( ( 1  -  t )  x.  ( A `  k )
)  +  ( t  x.  ( C `  k ) ) ) )  +  ( r  x.  ( B `  k ) ) )  =  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) ) )  +  ( r  x.  ( B `  i )
) ) )
143 eqid 2622 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ( 1 ... N )  |->  ( ( ( 1  -  r
)  x.  ( ( ( 1  -  t
)  x.  ( A `
 k ) )  +  ( t  x.  ( C `  k
) ) ) )  +  ( r  x.  ( B `  k
) ) ) )  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  k ) )  +  ( t  x.  ( C `  k )
) ) )  +  ( r  x.  ( B `  k )
) ) )
144 ovex 6678 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 1  -  r
)  x.  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) ) )  +  ( r  x.  ( B `  i
) ) )  e. 
_V
145142, 143, 144fvmpt 6282 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  ( 1 ... N )  ->  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  k
) )  +  ( t  x.  ( C `
 k ) ) ) )  +  ( r  x.  ( B `
 k ) ) ) ) `  i
)  =  ( ( ( 1  -  r
)  x.  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) ) )  +  ( r  x.  ( B `  i
) ) ) )
146133, 145sylan9eq 2676 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =  ( k  e.  ( 1 ... N )  |->  ( ( ( 1  -  r
)  x.  ( ( ( 1  -  t
)  x.  ( A `
 k ) )  +  ( t  x.  ( C `  k
) ) ) )  +  ( r  x.  ( B `  k
) ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( x `  i )  =  ( ( ( 1  -  r )  x.  (
( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  +  ( r  x.  ( B `  i ) ) ) )
147146eqeq1d 2624 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  ( k  e.  ( 1 ... N )  |->  ( ( ( 1  -  r
)  x.  ( ( ( 1  -  t
)  x.  ( A `
 k ) )  +  ( t  x.  ( C `  k
) ) ) )  +  ( r  x.  ( B `  k
) ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
x `  i )  =  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) ) )  +  ( r  x.  ( B `  i )
) )  <->  ( (
( 1  -  r
)  x.  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) ) )  +  ( r  x.  ( B `  i
) ) )  =  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i
) )  +  ( t  x.  ( C `
 i ) ) ) )  +  ( r  x.  ( B `
 i ) ) ) ) )
148146eqeq1d 2624 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  ( k  e.  ( 1 ... N )  |->  ( ( ( 1  -  r
)  x.  ( ( ( 1  -  t
)  x.  ( A `
 k ) )  +  ( t  x.  ( C `  k
) ) ) )  +  ( r  x.  ( B `  k
) ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
x `  i )  =  ( ( ( 1  -  q )  x.  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) ) )  +  ( q  x.  ( A `  i )
) )  <->  ( (
( 1  -  r
)  x.  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) ) )  +  ( r  x.  ( B `  i
) ) )  =  ( ( ( 1  -  q )  x.  ( ( ( 1  -  s )  x.  ( B `  i
) )  +  ( s  x.  ( C `
 i ) ) ) )  +  ( q  x.  ( A `
 i ) ) ) ) )
149147, 148anbi12d 747 . . . . . . . . . . . . . . 15  |-  ( ( x  =  ( k  e.  ( 1 ... N )  |->  ( ( ( 1  -  r
)  x.  ( ( ( 1  -  t
)  x.  ( A `
 k ) )  +  ( t  x.  ( C `  k
) ) ) )  +  ( r  x.  ( B `  k
) ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
( x `  i
)  =  ( ( ( 1  -  r
)  x.  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) ) )  +  ( r  x.  ( B `  i
) ) )  /\  ( x `  i
)  =  ( ( ( 1  -  q
)  x.  ( ( ( 1  -  s
)  x.  ( B `
 i ) )  +  ( s  x.  ( C `  i
) ) ) )  +  ( q  x.  ( A `  i
) ) ) )  <-> 
( ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) ) )  +  ( r  x.  ( B `  i )
) )  =  ( ( ( 1  -  r )  x.  (
( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  +  ( r  x.  ( B `  i ) ) )  /\  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) ) )  +  ( r  x.  ( B `  i )
) )  =  ( ( ( 1  -  q )  x.  (
( ( 1  -  s )  x.  ( B `  i )
)  +  ( s  x.  ( C `  i ) ) ) )  +  ( q  x.  ( A `  i ) ) ) ) ) )
150 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1  -  r
)  x.  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) ) )  +  ( r  x.  ( B `  i
) ) )  =  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i
) )  +  ( t  x.  ( C `
 i ) ) ) )  +  ( r  x.  ( B `
 i ) ) )
151150biantrur 527 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 1  -  r )  x.  (
( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  +  ( r  x.  ( B `  i ) ) )  =  ( ( ( 1  -  q )  x.  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) ) )  +  ( q  x.  ( A `  i )
) )  <->  ( (
( ( 1  -  r )  x.  (
( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  +  ( r  x.  ( B `  i ) ) )  =  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) ) )  +  ( r  x.  ( B `  i )
) )  /\  (
( ( 1  -  r )  x.  (
( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  +  ( r  x.  ( B `  i ) ) )  =  ( ( ( 1  -  q )  x.  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) ) )  +  ( q  x.  ( A `  i )
) ) ) )
152149, 151syl6bbr 278 . . . . . . . . . . . . . 14  |-  ( ( x  =  ( k  e.  ( 1 ... N )  |->  ( ( ( 1  -  r
)  x.  ( ( ( 1  -  t
)  x.  ( A `
 k ) )  +  ( t  x.  ( C `  k
) ) ) )  +  ( r  x.  ( B `  k
) ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
( x `  i
)  =  ( ( ( 1  -  r
)  x.  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) ) )  +  ( r  x.  ( B `  i
) ) )  /\  ( x `  i
)  =  ( ( ( 1  -  q
)  x.  ( ( ( 1  -  s
)  x.  ( B `
 i ) )  +  ( s  x.  ( C `  i
) ) ) )  +  ( q  x.  ( A `  i
) ) ) )  <-> 
( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i
) )  +  ( t  x.  ( C `
 i ) ) ) )  +  ( r  x.  ( B `
 i ) ) )  =  ( ( ( 1  -  q
)  x.  ( ( ( 1  -  s
)  x.  ( B `
 i ) )  +  ( s  x.  ( C `  i
) ) ) )  +  ( q  x.  ( A `  i
) ) ) ) )
153152ralbidva 2985 . . . . . . . . . . . . 13  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  k ) )  +  ( t  x.  ( C `  k )
) ) )  +  ( r  x.  ( B `  k )
) ) )  -> 
( A. i  e.  ( 1 ... N
) ( ( x `
 i )  =  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i
) )  +  ( t  x.  ( C `
 i ) ) ) )  +  ( r  x.  ( B `
 i ) ) )  /\  ( x `
 i )  =  ( ( ( 1  -  q )  x.  ( ( ( 1  -  s )  x.  ( B `  i
) )  +  ( s  x.  ( C `
 i ) ) ) )  +  ( q  x.  ( A `
 i ) ) ) )  <->  A. i  e.  ( 1 ... N
) ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) ) )  +  ( r  x.  ( B `  i )
) )  =  ( ( ( 1  -  q )  x.  (
( ( 1  -  s )  x.  ( B `  i )
)  +  ( s  x.  ( C `  i ) ) ) )  +  ( q  x.  ( A `  i ) ) ) ) )
154153rspcev 3309 . . . . . . . . . . . 12  |-  ( ( ( k  e.  ( 1 ... N ) 
|->  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  k
) )  +  ( t  x.  ( C `
 k ) ) ) )  +  ( r  x.  ( B `
 k ) ) ) )  e.  ( EE `  N )  /\  A. i  e.  ( 1 ... N
) ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) ) )  +  ( r  x.  ( B `  i )
) )  =  ( ( ( 1  -  q )  x.  (
( ( 1  -  s )  x.  ( B `  i )
)  +  ( s  x.  ( C `  i ) ) ) )  +  ( q  x.  ( A `  i ) ) ) )  ->  E. x  e.  ( EE `  N
) A. i  e.  ( 1 ... N
) ( ( x `
 i )  =  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i
) )  +  ( t  x.  ( C `
 i ) ) ) )  +  ( r  x.  ( B `
 i ) ) )  /\  ( x `
 i )  =  ( ( ( 1  -  q )  x.  ( ( ( 1  -  s )  x.  ( B `  i
) )  +  ( s  x.  ( C `
 i ) ) ) )  +  ( q  x.  ( A `
 i ) ) ) ) )
155154ex 450 . . . . . . . . . . 11  |-  ( ( k  e.  ( 1 ... N )  |->  ( ( ( 1  -  r )  x.  (
( ( 1  -  t )  x.  ( A `  k )
)  +  ( t  x.  ( C `  k ) ) ) )  +  ( r  x.  ( B `  k ) ) ) )  e.  ( EE
`  N )  -> 
( A. i  e.  ( 1 ... N
) ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) ) )  +  ( r  x.  ( B `  i )
) )  =  ( ( ( 1  -  q )  x.  (
( ( 1  -  s )  x.  ( B `  i )
)  +  ( s  x.  ( C `  i ) ) ) )  +  ( q  x.  ( A `  i ) ) )  ->  E. x  e.  ( EE `  N ) A. i  e.  ( 1 ... N ) ( ( x `  i )  =  ( ( ( 1  -  r )  x.  (
( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  +  ( r  x.  ( B `  i ) ) )  /\  ( x `  i )  =  ( ( ( 1  -  q )  x.  (
( ( 1  -  s )  x.  ( B `  i )
)  +  ( s  x.  ( C `  i ) ) ) )  +  ( q  x.  ( A `  i ) ) ) ) ) )
156132, 155syl 17 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  r  e.  ( 0 [,] 1 ) )  /\  q  e.  ( 0 [,] 1 ) )  ->  ( A. i  e.  ( 1 ... N ) ( ( ( 1  -  r )  x.  (
( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  +  ( r  x.  ( B `  i ) ) )  =  ( ( ( 1  -  q )  x.  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) ) )  +  ( q  x.  ( A `  i )
) )  ->  E. x  e.  ( EE `  N
) A. i  e.  ( 1 ... N
) ( ( x `
 i )  =  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i
) )  +  ( t  x.  ( C `
 i ) ) ) )  +  ( r  x.  ( B `
 i ) ) )  /\  ( x `
 i )  =  ( ( ( 1  -  q )  x.  ( ( ( 1  -  s )  x.  ( B `  i
) )  +  ( s  x.  ( C `
 i ) ) ) )  +  ( q  x.  ( A `
 i ) ) ) ) ) )
157156reximdva 3017 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1
) ) )  /\  r  e.  ( 0 [,] 1 ) )  ->  ( E. q  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) ) )  +  ( r  x.  ( B `  i )
) )  =  ( ( ( 1  -  q )  x.  (
( ( 1  -  s )  x.  ( B `  i )
)  +  ( s  x.  ( C `  i ) ) ) )  +  ( q  x.  ( A `  i ) ) )  ->  E. q  e.  ( 0 [,] 1 ) E. x  e.  ( EE `  N ) A. i  e.  ( 1 ... N ) ( ( x `  i )  =  ( ( ( 1  -  r )  x.  (
( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  +  ( r  x.  ( B `  i ) ) )  /\  ( x `  i )  =  ( ( ( 1  -  q )  x.  (
( ( 1  -  s )  x.  ( B `  i )
)  +  ( s  x.  ( C `  i ) ) ) )  +  ( q  x.  ( A `  i ) ) ) ) ) )
158157reximdva 3017 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  (
t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) ) )  ->  ( E. r  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( ( 1  -  r )  x.  (
( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  +  ( r  x.  ( B `  i ) ) )  =  ( ( ( 1  -  q )  x.  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) ) )  +  ( q  x.  ( A `  i )
) )  ->  E. r  e.  ( 0 [,] 1
) E. q  e.  ( 0 [,] 1
) E. x  e.  ( EE `  N
) A. i  e.  ( 1 ... N
) ( ( x `
 i )  =  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i
) )  +  ( t  x.  ( C `
 i ) ) ) )  +  ( r  x.  ( B `
 i ) ) )  /\  ( x `
 i )  =  ( ( ( 1  -  q )  x.  ( ( ( 1  -  s )  x.  ( B `  i
) )  +  ( s  x.  ( C `
 i ) ) ) )  +  ( q  x.  ( A `
 i ) ) ) ) ) )
159104, 158mpd 15 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  (
t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) ) )  ->  E. r  e.  ( 0 [,] 1
) E. q  e.  ( 0 [,] 1
) E. x  e.  ( EE `  N
) A. i  e.  ( 1 ... N
) ( ( x `
 i )  =  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i
) )  +  ( t  x.  ( C `
 i ) ) ) )  +  ( r  x.  ( B `
 i ) ) )  /\  ( x `
 i )  =  ( ( ( 1  -  q )  x.  ( ( ( 1  -  s )  x.  ( B `  i
) )  +  ( s  x.  ( C `
 i ) ) ) )  +  ( q  x.  ( A `
 i ) ) ) ) )
160 rexcom 3099 . . . . . . . . 9  |-  ( E. q  e.  ( 0 [,] 1 ) E. x  e.  ( EE
`  N ) A. i  e.  ( 1 ... N ) ( ( x `  i
)  =  ( ( ( 1  -  r
)  x.  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) ) )  +  ( r  x.  ( B `  i
) ) )  /\  ( x `  i
)  =  ( ( ( 1  -  q
)  x.  ( ( ( 1  -  s
)  x.  ( B `
 i ) )  +  ( s  x.  ( C `  i
) ) ) )  +  ( q  x.  ( A `  i
) ) ) )  <->  E. x  e.  ( EE `  N ) E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( x `  i
)  =  ( ( ( 1  -  r
)  x.  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) ) )  +  ( r  x.  ( B `  i
) ) )  /\  ( x `  i
)  =  ( ( ( 1  -  q
)  x.  ( ( ( 1  -  s
)  x.  ( B `
 i ) )  +  ( s  x.  ( C `  i
) ) ) )  +  ( q  x.  ( A `  i
) ) ) ) )
161160rexbii 3041 . . . . . . . 8  |-  ( E. r  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) E. x  e.  ( EE
`  N ) A. i  e.  ( 1 ... N ) ( ( x `  i
)  =  ( ( ( 1  -  r
)  x.  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) ) )  +  ( r  x.  ( B `  i
) ) )  /\  ( x `  i
)  =  ( ( ( 1  -  q
)  x.  ( ( ( 1  -  s
)  x.  ( B `
 i ) )  +  ( s  x.  ( C `  i
) ) ) )  +  ( q  x.  ( A `  i
) ) ) )  <->  E. r  e.  (
0 [,] 1 ) E. x  e.  ( EE `  N ) E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( x `  i )  =  ( ( ( 1  -  r )  x.  (
( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  +  ( r  x.  ( B `  i ) ) )  /\  ( x `  i )  =  ( ( ( 1  -  q )  x.  (
( ( 1  -  s )  x.  ( B `  i )
)  +  ( s  x.  ( C `  i ) ) ) )  +  ( q  x.  ( A `  i ) ) ) ) )
162 rexcom 3099 . . . . . . . 8  |-  ( E. r  e.  ( 0 [,] 1 ) E. x  e.  ( EE
`  N ) E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( x `  i
)  =  ( ( ( 1  -  r
)  x.  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) ) )  +  ( r  x.  ( B `  i
) ) )  /\  ( x `  i
)  =  ( ( ( 1  -  q
)  x.  ( ( ( 1  -  s
)  x.  ( B `
 i ) )  +  ( s  x.  ( C `  i
) ) ) )  +  ( q  x.  ( A `  i
) ) ) )  <->  E. x  e.  ( EE `  N ) E. r  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( x `  i
)  =  ( ( ( 1  -  r
)  x.  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) ) )  +  ( r  x.  ( B `  i
) ) )  /\  ( x `  i
)  =  ( ( ( 1  -  q
)  x.  ( ( ( 1  -  s
)  x.  ( B `
 i ) )  +  ( s  x.  ( C `  i
) ) ) )  +  ( q  x.  ( A `  i
) ) ) ) )
163161, 162bitri 264 . . . . . . 7  |-  ( E. r  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) E. x  e.  ( EE
`  N ) A. i  e.  ( 1 ... N ) ( ( x `  i
)  =  ( ( ( 1  -  r
)  x.  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) ) )  +  ( r  x.  ( B `  i
) ) )  /\  ( x `  i
)  =  ( ( ( 1  -  q
)  x.  ( ( ( 1  -  s
)  x.  ( B `
 i ) )  +  ( s  x.  ( C `  i
) ) ) )  +  ( q  x.  ( A `  i
) ) ) )  <->  E. x  e.  ( EE `  N ) E. r  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( x `  i
)  =  ( ( ( 1  -  r
)  x.  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) ) )  +  ( r  x.  ( B `  i
) ) )  /\  ( x `  i
)  =  ( ( ( 1  -  q
)  x.  ( ( ( 1  -  s
)  x.  ( B `
 i ) )  +  ( s  x.  ( C `  i
) ) ) )  +  ( q  x.  ( A `  i
) ) ) ) )
164159, 163sylib 208 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  (
t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) ) )  ->  E. x  e.  ( EE `  N
) E. r  e.  ( 0 [,] 1
) E. q  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( x `
 i )  =  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i
) )  +  ( t  x.  ( C `
 i ) ) ) )  +  ( r  x.  ( B `
 i ) ) )  /\  ( x `
 i )  =  ( ( ( 1  -  q )  x.  ( ( ( 1  -  s )  x.  ( B `  i
) )  +  ( s  x.  ( C `
 i ) ) ) )  +  ( q  x.  ( A `
 i ) ) ) ) )
165 oveq2 6658 . . . . . . . . . . . . 13  |-  ( ( D `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  ->  (
( 1  -  r
)  x.  ( D `
 i ) )  =  ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i
) )  +  ( t  x.  ( C `
 i ) ) ) ) )
166165oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( D `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  ->  (
( ( 1  -  r )  x.  ( D `  i )
)  +  ( r  x.  ( B `  i ) ) )  =  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) ) )  +  ( r  x.  ( B `  i )
) ) )
167166eqeq2d 2632 . . . . . . . . . . 11  |-  ( ( D `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  ->  (
( x `  i
)  =  ( ( ( 1  -  r
)  x.  ( D `
 i ) )  +  ( r  x.  ( B `  i
) ) )  <->  ( x `  i )  =  ( ( ( 1  -  r )  x.  (
( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  +  ( r  x.  ( B `  i ) ) ) ) )
168 oveq2 6658 . . . . . . . . . . . . 13  |-  ( ( E `  i )  =  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) )  ->  (
( 1  -  q
)  x.  ( E `
 i ) )  =  ( ( 1  -  q )  x.  ( ( ( 1  -  s )  x.  ( B `  i
) )  +  ( s  x.  ( C `
 i ) ) ) ) )
169168oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( E `  i )  =  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) )  ->  (
( ( 1  -  q )  x.  ( E `  i )
)  +  ( q  x.  ( A `  i ) ) )  =  ( ( ( 1  -  q )  x.  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) ) )  +  ( q  x.  ( A `  i )
) ) )
170169eqeq2d 2632 . . . . . . . . . . 11  |-  ( ( E `  i )  =  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) )  ->  (
( x `  i
)  =  ( ( ( 1  -  q
)  x.  ( E `
 i ) )  +  ( q  x.  ( A `  i
) ) )  <->  ( x `  i )  =  ( ( ( 1  -  q )  x.  (
( ( 1  -  s )  x.  ( B `  i )
)  +  ( s  x.  ( C `  i ) ) ) )  +  ( q  x.  ( A `  i ) ) ) ) )
171167, 170bi2anan9 917 . . . . . . . . . 10  |-  ( ( ( D `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) )  /\  ( E `  i )  =  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) ) )  -> 
( ( ( x `
 i )  =  ( ( ( 1  -  r )  x.  ( D `  i
) )  +  ( r  x.  ( B `
 i ) ) )  /\  ( x `
 i )  =  ( ( ( 1  -  q )  x.  ( E `  i
) )  +  ( q  x.  ( A `
 i ) ) ) )  <->  ( (
x `  i )  =  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) ) )  +  ( r  x.  ( B `  i )
) )  /\  (
x `  i )  =  ( ( ( 1  -  q )  x.  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) ) )  +  ( q  x.  ( A `  i )
) ) ) ) )
172171ralimi 2952 . . . . . . . . 9  |-  ( A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) )  /\  ( E `  i )  =  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) ) )  ->  A. i  e.  (
1 ... N ) ( ( ( x `  i )  =  ( ( ( 1  -  r )  x.  ( D `  i )
)  +  ( r  x.  ( B `  i ) ) )  /\  ( x `  i )  =  ( ( ( 1  -  q )  x.  ( E `  i )
)  +  ( q  x.  ( A `  i ) ) ) )  <->  ( ( x `
 i )  =  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i
) )  +  ( t  x.  ( C `
 i ) ) ) )  +  ( r  x.  ( B `
 i ) ) )  /\  ( x `
 i )  =  ( ( ( 1  -  q )  x.  ( ( ( 1  -  s )  x.  ( B `  i
) )  +  ( s  x.  ( C `
 i ) ) ) )  +  ( q  x.  ( A `
 i ) ) ) ) ) )
173 ralbi 3068 . . . . . . . . 9  |-  ( A. i  e.  ( 1 ... N ) ( ( ( x `  i )  =  ( ( ( 1  -  r )  x.  ( D `  i )
)  +  ( r  x.  ( B `  i ) ) )  /\  ( x `  i )  =  ( ( ( 1  -  q )  x.  ( E `  i )
)  +  ( q  x.  ( A `  i ) ) ) )  <->  ( ( x `
 i )  =  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i
) )  +  ( t  x.  ( C `
 i ) ) ) )  +  ( r  x.  ( B `
 i ) ) )  /\  ( x `
 i )  =  ( ( ( 1  -  q )  x.  ( ( ( 1  -  s )  x.  ( B `  i
) )  +  ( s  x.  ( C `
 i ) ) ) )  +  ( q  x.  ( A `
 i ) ) ) ) )  -> 
( A. i  e.  ( 1 ... N
) ( ( x `
 i )  =  ( ( ( 1  -  r )  x.  ( D `  i
) )  +  ( r  x.  ( B `
 i ) ) )  /\  ( x `
 i )  =  ( ( ( 1  -  q )  x.  ( E `  i
) )  +  ( q  x.  ( A `
 i ) ) ) )  <->  A. i  e.  ( 1 ... N
) ( ( x `
 i )  =  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i
) )  +  ( t  x.  ( C `
 i ) ) ) )  +  ( r  x.  ( B `
 i ) ) )  /\  ( x `
 i )  =  ( ( ( 1  -  q )  x.  ( ( ( 1  -  s )  x.  ( B `  i
) )  +  ( s  x.  ( C `
 i ) ) ) )  +  ( q  x.  ( A `
 i ) ) ) ) ) )
174172, 173syl 17 . . . . . . . 8  |-  ( A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) )  /\  ( E `  i )  =  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) ) )  -> 
( A. i  e.  ( 1 ... N
) ( ( x `
 i )  =  ( ( ( 1  -  r )  x.  ( D `  i
) )  +  ( r  x.  ( B `
 i ) ) )  /\  ( x `
 i )  =  ( ( ( 1  -  q )  x.  ( E `  i
) )  +  ( q  x.  ( A `
 i ) ) ) )  <->  A. i  e.  ( 1 ... N
) ( ( x `
 i )  =  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i
) )  +  ( t  x.  ( C `
 i ) ) ) )  +  ( r  x.  ( B `
 i ) ) )  /\  ( x `
 i )  =  ( ( ( 1  -  q )  x.  ( ( ( 1  -  s )  x.  ( B `  i
) )  +  ( s  x.  ( C `
 i ) ) ) )  +  ( q  x.  ( A `
 i ) ) ) ) ) )
175174rexbidv 3052 . . . . . . 7  |-  ( A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) )  /\  ( E `  i )  =  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) ) )  -> 
( E. q  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( x `
 i )  =  ( ( ( 1  -  r )  x.  ( D `  i
) )  +  ( r  x.  ( B `
 i ) ) )  /\  ( x `
 i )  =  ( ( ( 1  -  q )  x.  ( E `  i
) )  +  ( q  x.  ( A `
 i ) ) ) )  <->  E. q  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( x `
 i )  =  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i
) )  +  ( t  x.  ( C `
 i ) ) ) )  +  ( r  x.  ( B `
 i ) ) )  /\  ( x `
 i )  =  ( ( ( 1  -  q )  x.  ( ( ( 1  -  s )  x.  ( B `  i
) )  +  ( s  x.  ( C `
 i ) ) ) )  +  ( q  x.  ( A `
 i ) ) ) ) ) )
1761752rexbidv 3057 . . . . . 6  |-  ( A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) )  /\  ( E `  i )  =  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) ) )  -> 
( E. x  e.  ( EE `  N
) E. r  e.  ( 0 [,] 1
) E. q  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( x `
 i )  =  ( ( ( 1  -  r )  x.  ( D `  i
) )  +  ( r  x.  ( B `
 i ) ) )  /\  ( x `
 i )  =  ( ( ( 1  -  q )  x.  ( E `  i
) )  +  ( q  x.  ( A `
 i ) ) ) )  <->  E. x  e.  ( EE `  N
) E. r  e.  ( 0 [,] 1
) E. q  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( x `
 i )  =  ( ( ( 1  -  r )  x.  ( ( ( 1  -  t )  x.  ( A `  i
) )  +  ( t  x.  ( C `
 i ) ) ) )  +  ( r  x.  ( B `
 i ) ) )  /\  ( x `
 i )  =  ( ( ( 1  -  q )  x.  ( ( ( 1  -  s )  x.  ( B `  i
) )  +  ( s  x.  ( C `
 i ) ) ) )  +  ( q  x.  ( A `
 i ) ) ) ) ) )
177164, 176syl5ibrcom 237 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  (
t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) ) )  ->  ( A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) )  /\  ( E `  i )  =  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) ) )  ->  E. x  e.  ( EE `  N ) E. r  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( x `  i
)  =  ( ( ( 1  -  r
)  x.  ( D `
 i ) )  +  ( r  x.  ( B `  i
) ) )  /\  ( x `  i
)  =  ( ( ( 1  -  q
)  x.  ( E `
 i ) )  +  ( q  x.  ( A `  i
) ) ) ) ) )
1781773expia 1267 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  ->  ( A. i  e.  (
1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) )  /\  ( E `  i )  =  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) ) )  ->  E. x  e.  ( EE `  N ) E. r  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( x `  i
)  =  ( ( ( 1  -  r
)  x.  ( D `
 i ) )  +  ( r  x.  ( B `  i
) ) )  /\  ( x `  i
)  =  ( ( ( 1  -  q
)  x.  ( E `
 i ) )  +  ( q  x.  ( A `  i
) ) ) ) ) ) )
179178rexlimdvv 3037 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( E. t  e.  ( 0 [,] 1
) E. s  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( D `
 i )  =  ( ( ( 1  -  t )  x.  ( A `  i
) )  +  ( t  x.  ( C `
 i ) ) )  /\  ( E `
 i )  =  ( ( ( 1  -  s )  x.  ( B `  i
) )  +  ( s  x.  ( C `
 i ) ) ) )  ->  E. x  e.  ( EE `  N
) E. r  e.  ( 0 [,] 1
) E. q  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( x `
 i )  =  ( ( ( 1  -  r )  x.  ( D `  i
) )  +  ( r  x.  ( B `
 i ) ) )  /\  ( x `
 i )  =  ( ( ( 1  -  q )  x.  ( E `  i
) )  +  ( q  x.  ( A `
 i ) ) ) ) ) )
1801793adant3 1081 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( E. t  e.  ( 0 [,] 1
) E. s  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( D `
 i )  =  ( ( ( 1  -  t )  x.  ( A `  i
) )  +  ( t  x.  ( C `
 i ) ) )  /\  ( E `
 i )  =  ( ( ( 1  -  s )  x.  ( B `  i
) )  +  ( s  x.  ( C `
 i ) ) ) )  ->  E. x  e.  ( EE `  N
) E. r  e.  ( 0 [,] 1
) E. q  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( x `
 i )  =  ( ( ( 1  -  r )  x.  ( D `  i
) )  +  ( r  x.  ( B `
 i ) ) )  /\  ( x `
 i )  =  ( ( ( 1  -  q )  x.  ( E `  i
) )  +  ( q  x.  ( A `
 i ) ) ) ) ) )
181 simp3l 1089 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  ->  D  e.  ( EE `  N ) )
182 simp21 1094 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  ->  A  e.  ( EE `  N ) )
183 simp23 1096 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  ->  C  e.  ( EE `  N ) )
184 brbtwn 25779 . . . . 5  |-  ( ( D  e.  ( EE
`  N )  /\  A  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( D  Btwn  <. A ,  C >.  <->  E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) ) ) )
185181, 182, 183, 184syl3anc 1326 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( D  Btwn  <. A ,  C >. 
<->  E. t  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) ) ) )
186 simp3r 1090 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  ->  E  e.  ( EE `  N ) )
187 simp22 1095 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  ->  B  e.  ( EE `  N ) )
188 brbtwn 25779 . . . . 5  |-  ( ( E  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( E  Btwn  <. B ,  C >.  <->  E. s  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( E `  i
)  =  ( ( ( 1  -  s
)  x.  ( B `
 i ) )  +  ( s  x.  ( C `  i
) ) ) ) )
189186, 187, 183, 188syl3anc 1326 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( E  Btwn  <. B ,  C >. 
<->  E. s  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( E `  i
)  =  ( ( ( 1  -  s
)  x.  ( B `
 i ) )  +  ( s  x.  ( C `  i
) ) ) ) )
190185, 189anbi12d 747 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( ( D  Btwn  <. A ,  C >.  /\  E  Btwn  <. B ,  C >. )  <->  ( E. t  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  E. s  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) ) ) ) )
191 r19.26 3064 . . . . 5  |-  ( A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) )  /\  ( E `  i )  =  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) ) )  <->  ( A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) ) ) )
1921912rexbii 3042 . . . 4  |-  ( E. t  e.  ( 0 [,] 1 ) E. s  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) )  /\  ( E `  i )  =  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) ) )  <->  E. t  e.  ( 0 [,] 1
) E. s  e.  ( 0 [,] 1
) ( A. i  e.  ( 1 ... N
) ( D `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( C `  i ) ) )  /\  A. i  e.  ( 1 ... N
) ( E `  i )  =  ( ( ( 1  -  s )  x.  ( B `  i )
)  +  ( s  x.  ( C `  i ) ) ) ) )
193 reeanv 3107 . . . 4  |-  ( E. t  e.  ( 0 [,] 1 ) E. s  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( D `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) ) )  <->  ( E. t  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  E. s  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) ) ) )
194192, 193bitri 264 . . 3  |-  ( E. t  e.  ( 0 [,] 1 ) E. s  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) )  /\  ( E `  i )  =  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) ) )  <->  ( E. t  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  E. s  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  s )  x.  ( B `  i ) )  +  ( s  x.  ( C `  i )
) ) ) )
195190, 194syl6bbr 278 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( ( D  Btwn  <. A ,  C >.  /\  E  Btwn  <. B ,  C >. )  <->  E. t  e.  ( 0 [,] 1
) E. s  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( D `
 i )  =  ( ( ( 1  -  t )  x.  ( A `  i
) )  +  ( t  x.  ( C `
 i ) ) )  /\  ( E `
 i )  =  ( ( ( 1  -  s )  x.  ( B `  i
) )  +  ( s  x.  ( C `
 i ) ) ) ) ) )
196 simpr 477 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  x  e.  ( EE `  N ) )
197 simpl3l 1116 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  D  e.  ( EE `  N ) )
198 simpl22 1140 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  B  e.  ( EE `  N ) )
199 brbtwn 25779 . . . . . 6  |-  ( ( x  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  (
x  Btwn  <. D ,  B >. 
<->  E. r  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( x `  i
)  =  ( ( ( 1  -  r
)  x.  ( D `
 i ) )  +  ( r  x.  ( B `  i
) ) ) ) )
200196, 197, 198, 199syl3anc 1326 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( x  Btwn  <. D ,  B >. 
<->  E. r  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( x `  i
)  =  ( ( ( 1  -  r
)  x.  ( D `
 i ) )  +  ( r  x.  ( B `  i
) ) ) ) )
201 simpl3r 1117 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  E  e.  ( EE `  N ) )
202 simpl21 1139 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  A  e.  ( EE `  N ) )
203 brbtwn 25779 . . . . . 6  |-  ( ( x  e.  ( EE
`  N )  /\  E  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  (
x  Btwn  <. E ,  A >. 
<->  E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( x `  i
)  =  ( ( ( 1  -  q
)  x.  ( E `
 i ) )  +  ( q  x.  ( A `  i
) ) ) ) )
204196, 201, 202, 203syl3anc 1326 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( x  Btwn  <. E ,  A >. 
<->  E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( x `  i
)  =  ( ( ( 1  -  q
)  x.  ( E `
 i ) )  +  ( q  x.  ( A `  i
) ) ) ) )
205200, 204anbi12d 747 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( x  Btwn  <. D ,  B >.  /\  x  Btwn  <. E ,  A >. )  <->  ( E. r  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( x `  i )  =  ( ( ( 1  -  r )  x.  ( D `  i ) )  +  ( r  x.  ( B `  i )
) )  /\  E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( x `  i )  =  ( ( ( 1  -  q )  x.  ( E `  i ) )  +  ( q  x.  ( A `  i )
) ) ) ) )
206 r19.26 3064 . . . . . 6  |-  ( A. i  e.  ( 1 ... N ) ( ( x `  i
)  =  ( ( ( 1  -  r
)  x.  ( D `
 i ) )  +  ( r  x.  ( B `  i
) ) )  /\  ( x `  i
)  =  ( ( ( 1  -  q
)  x.  ( E `
 i ) )  +  ( q  x.  ( A `  i
) ) ) )  <-> 
( A. i  e.  ( 1 ... N
) ( x `  i )  =  ( ( ( 1  -  r )  x.  ( D `  i )
)  +  ( r  x.  ( B `  i ) ) )  /\  A. i  e.  ( 1 ... N
) ( x `  i )  =  ( ( ( 1  -  q )  x.  ( E `  i )
)  +  ( q  x.  ( A `  i ) ) ) ) )
2072062rexbii 3042 . . . . 5  |-  ( E. r  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( x `  i
)  =  ( ( ( 1  -  r
)  x.  ( D `
 i ) )  +  ( r  x.  ( B `  i
) ) )  /\  ( x `  i
)  =  ( ( ( 1  -  q
)  x.  ( E `
 i ) )  +  ( q  x.  ( A `  i
) ) ) )  <->  E. r  e.  (
0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( x `  i )  =  ( ( ( 1  -  r )  x.  ( D `  i )
)  +  ( r  x.  ( B `  i ) ) )  /\  A. i  e.  ( 1 ... N
) ( x `  i )  =  ( ( ( 1  -  q )  x.  ( E `  i )
)  +  ( q  x.  ( A `  i ) ) ) ) )
208 reeanv 3107 . . . . 5  |-  ( E. r  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( x `  i
)  =  ( ( ( 1  -  r
)  x.  ( D `
 i ) )  +  ( r  x.  ( B `  i
) ) )  /\  A. i  e.  ( 1 ... N ) ( x `  i )  =  ( ( ( 1  -  q )  x.  ( E `  i ) )  +  ( q  x.  ( A `  i )
) ) )  <->  ( E. r  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( x `  i )  =  ( ( ( 1  -  r )  x.  ( D `  i ) )  +  ( r  x.  ( B `  i )
) )  /\  E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( x `  i )  =  ( ( ( 1  -  q )  x.  ( E `  i ) )  +  ( q  x.  ( A `  i )
) ) ) )
209207, 208bitri 264 . . . 4  |-  ( E. r  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( x `  i
)  =  ( ( ( 1  -  r
)  x.  ( D `
 i ) )  +  ( r  x.  ( B `  i
) ) )  /\  ( x `  i
)  =  ( ( ( 1  -  q
)  x.  ( E `
 i ) )  +  ( q  x.  ( A `  i
) ) ) )  <-> 
( E. r  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( x `  i )  =  ( ( ( 1  -  r )  x.  ( D `  i )
)  +  ( r  x.  ( B `  i ) ) )  /\  E. q  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( x `  i )  =  ( ( ( 1  -  q )  x.  ( E `  i )
)  +  ( q  x.  ( A `  i ) ) ) ) )
210205, 209syl6bbr 278 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( x  Btwn  <. D ,  B >.  /\  x  Btwn  <. E ,  A >. )  <->  E. r  e.  ( 0 [,] 1
) E. q  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( x `
 i )  =  ( ( ( 1  -  r )  x.  ( D `  i
) )  +  ( r  x.  ( B `
 i ) ) )  /\  ( x `
 i )  =  ( ( ( 1  -  q )  x.  ( E `  i
) )  +  ( q  x.  ( A `
 i ) ) ) ) ) )
211210rexbidva 3049 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( E. x  e.  ( EE `  N
) ( x  Btwn  <. D ,  B >.  /\  x  Btwn  <. E ,  A >. )  <->  E. x  e.  ( EE `  N
) E. r  e.  ( 0 [,] 1
) E. q  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( x `
 i )  =  ( ( ( 1  -  r )  x.  ( D `  i
) )  +  ( r  x.  ( B `
 i ) ) )  /\  ( x `
 i )  =  ( ( ( 1  -  q )  x.  ( E `  i
) )  +  ( q  x.  ( A `
 i ) ) ) ) ) )
212180, 195, 2113imtr4d 283 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( ( D  Btwn  <. A ,  C >.  /\  E  Btwn  <. B ,  C >. )  ->  E. x  e.  ( EE `  N
) ( x  Btwn  <. D ,  B >.  /\  x  Btwn  <. E ,  A >. ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   <.cop 4183   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    <_ cle 10075    - cmin 10266   NNcn 11020   [,]cicc 12178   ...cfz 12326   EEcee 25768    Btwn cbtwn 25769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-z 11378  df-uz 11688  df-icc 12182  df-fz 12327  df-ee 25771  df-btwn 25772
This theorem is referenced by:  eengtrkg  25865  btwncomim  32120  btwnswapid  32124  btwnintr  32126  btwnexch3  32127  trisegint  32135  btwnconn1lem13  32206
  Copyright terms: Public domain W3C validator