MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riin0 Structured version   Visualization version   Unicode version

Theorem riin0 4594
Description: Relative intersection of an empty family. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
riin0  |-  ( X  =  (/)  ->  ( A  i^i  |^|_ x  e.  X  S )  =  A )
Distinct variable groups:    x, A    x, X
Allowed substitution hint:    S( x)

Proof of Theorem riin0
StepHypRef Expression
1 iineq1 4535 . . 3  |-  ( X  =  (/)  ->  |^|_ x  e.  X  S  =  |^|_
x  e.  (/)  S )
21ineq2d 3814 . 2  |-  ( X  =  (/)  ->  ( A  i^i  |^|_ x  e.  X  S )  =  ( A  i^i  |^|_ x  e.  (/)  S ) )
3 0iin 4578 . . . 4  |-  |^|_ x  e.  (/)  S  =  _V
43ineq2i 3811 . . 3  |-  ( A  i^i  |^|_ x  e.  (/)  S )  =  ( A  i^i  _V )
5 inv1 3970 . . 3  |-  ( A  i^i  _V )  =  A
64, 5eqtri 2644 . 2  |-  ( A  i^i  |^|_ x  e.  (/)  S )  =  A
72, 6syl6eq 2672 1  |-  ( X  =  (/)  ->  ( A  i^i  |^|_ x  e.  X  S )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483   _Vcvv 3200    i^i cin 3573   (/)c0 3915   |^|_ciin 4521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-iin 4523
This theorem is referenced by:  riinrab  4596  riiner  7820  mreriincl  16258  riinopn  20713  riincld  20848  fnemeet2  32362  pmapglb2N  35057  pmapglb2xN  35058
  Copyright terms: Public domain W3C validator