MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riinopn Structured version   Visualization version   Unicode version

Theorem riinopn 20713
Description: A finite indexed relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
1open.1  |-  X  = 
U. J
Assertion
Ref Expression
riinopn  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  J )  ->  ( X  i^i  |^|_ x  e.  A  B )  e.  J
)
Distinct variable groups:    x, A    x, J    x, X
Allowed substitution hint:    B( x)

Proof of Theorem riinopn
StepHypRef Expression
1 riin0 4594 . . . 4  |-  ( A  =  (/)  ->  ( X  i^i  |^|_ x  e.  A  B )  =  X )
21adantl 482 . . 3  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  J )  /\  A  =  (/) )  ->  ( X  i^i  |^|_ x  e.  A  B )  =  X )
3 simpl1 1064 . . . 4  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  J )  /\  A  =  (/) )  ->  J  e.  Top )
4 1open.1 . . . . 5  |-  X  = 
U. J
54topopn 20711 . . . 4  |-  ( J  e.  Top  ->  X  e.  J )
63, 5syl 17 . . 3  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  J )  /\  A  =  (/) )  ->  X  e.  J )
72, 6eqeltrd 2701 . 2  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  J )  /\  A  =  (/) )  ->  ( X  i^i  |^|_ x  e.  A  B )  e.  J
)
84eltopss 20712 . . . . . . . 8  |-  ( ( J  e.  Top  /\  B  e.  J )  ->  B  C_  X )
98ex 450 . . . . . . 7  |-  ( J  e.  Top  ->  ( B  e.  J  ->  B 
C_  X ) )
109adantr 481 . . . . . 6  |-  ( ( J  e.  Top  /\  A  e.  Fin )  ->  ( B  e.  J  ->  B  C_  X )
)
1110ralimdv 2963 . . . . 5  |-  ( ( J  e.  Top  /\  A  e.  Fin )  ->  ( A. x  e.  A  B  e.  J  ->  A. x  e.  A  B  C_  X ) )
12113impia 1261 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  J )  ->  A. x  e.  A  B  C_  X
)
13 riinn0 4595 . . . 4  |-  ( ( A. x  e.  A  B  C_  X  /\  A  =/=  (/) )  ->  ( X  i^i  |^|_ x  e.  A  B )  =  |^|_ x  e.  A  B )
1412, 13sylan 488 . . 3  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  J )  /\  A  =/=  (/) )  ->  ( X  i^i  |^|_ x  e.  A  B )  =  |^|_ x  e.  A  B )
15 iinopn 20707 . . . . . 6  |-  ( ( J  e.  Top  /\  ( A  e.  Fin  /\  A  =/=  (/)  /\  A. x  e.  A  B  e.  J ) )  ->  |^|_ x  e.  A  B  e.  J )
16153exp2 1285 . . . . 5  |-  ( J  e.  Top  ->  ( A  e.  Fin  ->  ( A  =/=  (/)  ->  ( A. x  e.  A  B  e.  J  ->  |^|_ x  e.  A  B  e.  J ) ) ) )
1716com34 91 . . . 4  |-  ( J  e.  Top  ->  ( A  e.  Fin  ->  ( A. x  e.  A  B  e.  J  ->  ( A  =/=  (/)  ->  |^|_ x  e.  A  B  e.  J ) ) ) )
18173imp1 1280 . . 3  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  J )  /\  A  =/=  (/) )  ->  |^|_ x  e.  A  B  e.  J )
1914, 18eqeltrd 2701 . 2  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  J )  /\  A  =/=  (/) )  ->  ( X  i^i  |^|_ x  e.  A  B )  e.  J
)
207, 19pm2.61dane 2881 1  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  J )  ->  ( X  i^i  |^|_ x  e.  A  B )  e.  J
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    i^i cin 3573    C_ wss 3574   (/)c0 3915   U.cuni 4436   |^|_ciin 4521   Fincfn 7955   Topctop 20698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-fin 7959  df-top 20699
This theorem is referenced by:  rintopn  20714  iuncld  20849
  Copyright terms: Public domain W3C validator