Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnemeet2 Structured version   Visualization version   Unicode version

Theorem fnemeet2 32362
Description: The meet of equivalence classes under the fineness relation-part two. (Contributed by Jeff Hankins, 6-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
fnemeet2  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  <->  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) ) )
Distinct variable groups:    y, t, x, S    t, V, x   
t, X, x, y   
t, T, x
Allowed substitution hints:    T( y)    V( y)

Proof of Theorem fnemeet2
StepHypRef Expression
1 riin0 4594 . . . . . . . . . 10  |-  ( S  =  (/)  ->  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  =  ~P X )
21unieqd 4446 . . . . . . . . 9  |-  ( S  =  (/)  ->  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  = 
U. ~P X )
3 unipw 4918 . . . . . . . . 9  |-  U. ~P X  =  X
42, 3syl6req 2673 . . . . . . . 8  |-  ( S  =  (/)  ->  X  = 
U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
) )
54a1i 11 . . . . . . 7  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( S  =  (/)  ->  X  =  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) ) ) )
6 n0 3931 . . . . . . . 8  |-  ( S  =/=  (/)  <->  E. x  x  e.  S )
7 unieq 4444 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  U. y  =  U. x )
87eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  ( X  =  U. y  <->  X  =  U. x ) )
98rspccva 3308 . . . . . . . . . . . 12  |-  ( ( A. y  e.  S  X  =  U. y  /\  x  e.  S
)  ->  X  =  U. x )
1093adant1 1079 . . . . . . . . . . 11  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  X  =  U. x )
11 fnemeet1 32361 . . . . . . . . . . . 12  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) ) Fne x )
12 eqid 2622 . . . . . . . . . . . . 13  |-  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  = 
U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
)
13 eqid 2622 . . . . . . . . . . . . 13  |-  U. x  =  U. x
1412, 13fnebas 32339 . . . . . . . . . . . 12  |-  ( ( ~P X  i^i  |^|_ t  e.  S  ( topGen `
 t ) ) Fne x  ->  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  = 
U. x )
1511, 14syl 17 . . . . . . . . . . 11  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  = 
U. x )
1610, 15eqtr4d 2659 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  X  =  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
) )
17163expia 1267 . . . . . . . . 9  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( x  e.  S  ->  X  =  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) ) ) )
1817exlimdv 1861 . . . . . . . 8  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( E. x  x  e.  S  ->  X  =  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
) ) )
196, 18syl5bi 232 . . . . . . 7  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( S  =/=  (/)  ->  X  =  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
) ) )
205, 19pm2.61dne 2880 . . . . . 6  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  ->  X  =  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) ) )
2120adantr 481 . . . . 5  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `
 t ) ) )  ->  X  =  U. ( ~P X  i^i  |^|_ t  e.  S  (
topGen `  t ) ) )
22 eqid 2622 . . . . . . 7  |-  U. T  =  U. T
2322, 12fnebas 32339 . . . . . 6  |-  ( T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
)  ->  U. T  = 
U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
) )
2423adantl 482 . . . . 5  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `
 t ) ) )  ->  U. T  = 
U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
) )
2521, 24eqtr4d 2659 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `
 t ) ) )  ->  X  =  U. T )
2625ex 450 . . 3  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  ->  X  =  U. T ) )
27 fnetr 32346 . . . . . . 7  |-  ( ( T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  /\  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `
 t ) ) Fne x )  ->  T Fne x )
2827expcom 451 . . . . . 6  |-  ( ( ~P X  i^i  |^|_ t  e.  S  ( topGen `
 t ) ) Fne x  ->  ( T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
)  ->  T Fne x ) )
2911, 28syl 17 . . . . 5  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  ( T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
)  ->  T Fne x ) )
30293expa 1265 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  x  e.  S )  ->  ( T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
)  ->  T Fne x ) )
3130ralrimdva 2969 . . 3  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  ->  A. x  e.  S  T Fne x ) )
3226, 31jcad 555 . 2  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  -> 
( X  =  U. T  /\  A. x  e.  S  T Fne x
) ) )
33 simprl 794 . . . . 5  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) )  ->  X  =  U. T )
3420adantr 481 . . . . 5  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) )  ->  X  =  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) ) )
3533, 34eqtr3d 2658 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) )  ->  U. T  =  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `
 t ) ) )
36 eqimss2 3658 . . . . . . . 8  |-  ( X  =  U. T  ->  U. T  C_  X )
3736ad2antrl 764 . . . . . . 7  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) )  ->  U. T  C_  X )
38 sspwuni 4611 . . . . . . 7  |-  ( T 
C_  ~P X  <->  U. T  C_  X )
3937, 38sylibr 224 . . . . . 6  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) )  ->  T  C_  ~P X )
40 breq2 4657 . . . . . . . . . 10  |-  ( x  =  t  ->  ( T Fne x  <->  T Fne t ) )
4140cbvralv 3171 . . . . . . . . 9  |-  ( A. x  e.  S  T Fne x  <->  A. t  e.  S  T Fne t )
42 fnetg 32340 . . . . . . . . . 10  |-  ( T Fne t  ->  T  C_  ( topGen `  t )
)
4342ralimi 2952 . . . . . . . . 9  |-  ( A. t  e.  S  T Fne t  ->  A. t  e.  S  T  C_  ( topGen `
 t ) )
4441, 43sylbi 207 . . . . . . . 8  |-  ( A. x  e.  S  T Fne x  ->  A. t  e.  S  T  C_  ( topGen `
 t ) )
4544ad2antll 765 . . . . . . 7  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) )  ->  A. t  e.  S  T  C_  ( topGen `  t
) )
46 ssiin 4570 . . . . . . 7  |-  ( T 
C_  |^|_ t  e.  S  ( topGen `  t )  <->  A. t  e.  S  T  C_  ( topGen `  t )
)
4745, 46sylibr 224 . . . . . 6  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) )  ->  T  C_  |^|_ t  e.  S  ( topGen `  t )
)
4839, 47ssind 3837 . . . . 5  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) )  ->  T  C_  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
) )
49 pwexg 4850 . . . . . . . 8  |-  ( X  e.  V  ->  ~P X  e.  _V )
50 inex1g 4801 . . . . . . . 8  |-  ( ~P X  e.  _V  ->  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `
 t ) )  e.  _V )
5149, 50syl 17 . . . . . . 7  |-  ( X  e.  V  ->  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  e. 
_V )
5251ad2antrr 762 . . . . . 6  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) )  -> 
( ~P X  i^i  |^|_ t  e.  S  (
topGen `  t ) )  e.  _V )
53 bastg 20770 . . . . . 6  |-  ( ( ~P X  i^i  |^|_ t  e.  S  ( topGen `
 t ) )  e.  _V  ->  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  C_  ( topGen `  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
) ) )
5452, 53syl 17 . . . . 5  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) )  -> 
( ~P X  i^i  |^|_ t  e.  S  (
topGen `  t ) ) 
C_  ( topGen `  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) ) ) )
5548, 54sstrd 3613 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) )  ->  T  C_  ( topGen `  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) ) ) )
5622, 12isfne4 32335 . . . 4  |-  ( T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
)  <->  ( U. T  =  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
)  /\  T  C_  ( topGen `
 ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
) ) ) )
5735, 55, 56sylanbrc 698 . . 3  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) )  ->  T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
) )
5857ex 450 . 2  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( ( X  = 
U. T  /\  A. x  e.  S  T Fne x )  ->  T Fne ( ~P X  i^i  |^|_ t  e.  S  (
topGen `  t ) ) ) )
5932, 58impbid 202 1  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  <->  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   |^|_ciin 4521   class class class wbr 4653   ` cfv 5888   topGenctg 16098   Fnecfne 32331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-topgen 16104  df-fne 32332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator